Orbite géostationnaire - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Calcul de l'altitude de l'orbite géostationnaire

  • La seconde loi de Newton donne : F = m \times a
  • Le mouvement étant circulaire uniforme on a: a = \frac{v^2}{R}
  • Loi de la gravitation universelle énonce : F = G \times M \left ( \frac{m}{R^2}\right )

avec :

d'où

G \left ( \frac{M_T \times m_s}{(R_T + h)^2} \right ) = m_s \left ( \frac{v^2}{R_T + h} \right )

La vitesse, pour une trajectoire circulaire est : v= \frac{2\pi(R_T + h)}{T}

T est la période du mouvement, c’est-à-dire le temps que doit mettre le satellite pour faire un tour autour de la Terre. T = 23,93419 \times 3600\ s

Après calcul on obtient :

h= \left (\frac{G \times M_T \times T^2}{4\pi^2} \right )^\frac{1}{3} - R_T soit h = 35784\ km

Rejoindre l'orbite géostationnaire

Le placement d'un satellite en orbite géostationnaire est une opération complexe qui peut prendre plusieurs semaines.

Au départ, le satellite est sur une orbite de transfert géostationnaire.

Orbite cimetière

Lorsqu'un satellite en orbite géostationnaire arrive en fin de vie, généralement par épuisement de ses ergols, il ne peut plus être contrôlé pour rester rigoureusement géostationnaire. On le fait alors dériver vers une orbite très proche, dite « orbite cimetière » où il va rester, comme débris spatial pour une durée indéterminée.

Il est généralement demandé aux contrôleurs de satellites d'utiliser les quelques derniers kilogrammes d'ergols restant (si le satellite est toujours manœuvrable) pour repositionner le satellite un peu plus loin que l'orbite géostationnaire, lui évitant de passer ensuite proche des autres satellites en activité. Ensuite, il est demandé de couper tous les circuits électriques, évitant qu'il n'interfère avec les autres satellites près desquels il va passer, ainsi que de vider complètement les réservoirs d'ergols afin de se prémunir d'une explosion suite à une éventuelle collision avec un autre objet céleste.

Cette orbite présente un point d'anomalie où ont tendance à s'accumuler les satellites morts : proche du méridien 75 ° est, où se manifeste une modification du potentiel géogravitationnel terrestre, dû probablement à la présence du massif Himalayen.

Calcul de la vitesse du satellite

À partir de la seconde loi de Newton et de la loi de la gravitation universelle on peut écrire : \left (\frac{m_s \times v^2}{R_T + h} \right ) = G \frac{M_T \times m_s}{(R_T + h)^2}

d'où v^2 = G\left (\frac{M_T}{R_T + h} \right )

Pour h = 35784\ \rm{km} on obtient : v = 3,074\ \rm{km.s^{-1}}

Autre méthode de calcul :

V = \frac{2\pi \times R}{T}

R est la distance du centre de la Terre au satellite (en mètres), soit :

R = Rt + h : rayon de la Terre Rt + altitude du satellite h

et T est la période des satellites géostationnaires soit 86 164 s

V = \frac{2 \pi \times 4,2162.10^7}{86164} = 3074\ \rm{m.s^{-1}}

Page générée en 0.092 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise