Orage - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Classification

On classe les orages en plusieurs catégories selon l'énergie potentielle de convection disponible (EPCD) et le cisaillement du vent avec l'altitude :

Orage ordinaire et pulsatif

Cycle de vie d'un orage unicellulaire.

L'orage unicellulaire est caractérisé par une faible énergie (EPCD de 500 à 1000 J/Kg) avec peu ou pas de changement des vents avec l'altitude. Donc le cycle de vie d’environ 30 à 60 minutes de ces orages est caractérisé par un courant ascendant plus ou moins fort et vertical. Au départ, nous sommes en présence de cumulus mediocris qui fusionnent entre eux. Ils se transforment ensuite en cumulus bourgeonnants (ou cumulus congestus) avec début de précipitations en leur sein. Lorsque des cristaux de glace se forment au sommet du nuage, ces congestus deviennent par définition des cumulonimbus calvus. Apparaissent alors les premiers phénomènes électriques qui caractérisent les orages.

Au stade mature, une enclume se forme au sommet du nuage qui prend alors le nom de cumulonimbus capillatus. Cette enclume est provoquée par l'étalement du nuage suite à l'inversion de température à la tropopause et à la présence de forts vents à cette altitude. Cependant, le cœur de précipitations dans le nuage, qui se trouve à une grande altitude, commence à être trop pesant pour que le courant ascendant puisse le soutenir. La pluie mêlée de petits grêlons commence alors à redescendre vers le sol, ce qui provoquera bientôt la dissipation.

En effet, cette précipitation descend dans le courant ascendant et s'évapore partiellement en refroidissant l'air qui l'entoure. Ce dernier devient alors plus froid que l'environnement, et par poussée négative d'Archimède, accélère vers le sol. Graduellement le courant descendant s'intensifie et supplante le courant ascendant. Après la pluie, l'orage unicellulaire se dissipe rapidement créant une zone plus fraîche autour de lui.

Ce type d'orages est le plus fréquent. Il peut être associé à une forte averse et des rafales de vent. Les pluies ne sont presque jamais torrentielles et les chutes de gros grêlons sont rarissimes. Dans les régions arides du globe, l'évaporation peut être telle que la pluie n'atteint pas le sol et forme de la virga sous le cumulonimbus.

Orages multicellulaires

Cycle de vie d'un orage multicellulaire.

Lorsque la force et la direction des vents augmentent avec l’altitude de façon linéaire, le courant ascendant de convection n’est plus à la même position que le courant descendant avec la précipitation. Ceci produit un front de rafale qui s’éloigne en arc du cœur de précipitations et repousse la zone d’ascension. Un surplomb de précipitation se forme donc généralement dans le quadrant sud-ouest de la cellule mère dans l’hémisphère nord alors que les vents dominants de surface viennent de cette direction. Comme le front de rafale se dissocie avec le temps de la cellule initiale en formant des cellules filles, le multi-cellulaire forme donc une ligne d'orages à différents stades de développement.

La structure radar de ce type d’orage est caractérisée par des surplombs sur la partie sud-ouest d’une ligne de fort échos et ces surplombs semblent se déplacer dans cette direction alors que la ligne se déplace à 30° et 70 % de la vitesse des vents dans la couche où se produisent les orages.

En général, l'EPCD est moyen dans ce type d'orage, soit entre 800 et 1 500 J/Kg. Selon l'énergie et l'humidité disponibles, ce type d'orage peut donner des rafales de vents violentes, des pluies diluviennes et très rarement des tornades.

Orages supercellulaires

Vue conceptuelle d'un supercellulaire

Lorsque le cisaillement des vents tourne avec l’altitude, on peut arriver à une situation où on a un renforcement du mouvement vertical sous le courant ascendant et une synchronisation entre le front de rafales descendantes et le courant ascendant. De plus, si l'énergie potentielle convective disponible monte au-dessus de 1 500 J/kg, le courant ascendant permettra une très large extension verticale (jusqu'à plus de 15 km).

Ceci donne des cellules orageuses indépendantes en équilibre stable entre l’entrée et la sortie des courants qui leur permettent de vivre très longtemps. Elles peuvent produire de la grosse grêle, des vents destructeurs et des pluies torrentielles. De plus, si un cisaillement horizontal du vent en surface est transformé en tourbillon vertical par le courant ascendant, ces supercellules peuvent produire des tornades si la rotation est accentuée par le courant descendant.

Sur l'image de droite, on voit une représentation d'un tel cumulonimbus qui comprend :

  • Une enclume se forme à la tropopause qui est une barrière au développement vertical du nuage. Elle s'étend loin de la cellule originale poussée par des vents horizontaux très forts.
  • Un sommet en dôme stratosphérique, dit sommet protubérant, qui dépasse l'enclume là où le courant ascendant se trouve et indique qu'il est assez fort pour vaincre l'inversion de température à la tropopause.
  • Des mammatus sous l'enclume, des protubérances nuageuses formées par l'air froid d'altitude descendant par poussée négative d'Archimède dans le nuage. Ils sont signe d'instabilité.
  • Dans le flanc arrière droit, derrière les précipitations, une tornade sous le nuage-mur (Wall-cloud).
Structure horizontale et verticale d'un orage supercellulaire vu par radar.

Du point de vue radar, on remarque une voûte sans échos (dite voûte d'échos faibles) dans une coupe verticale (images ci-contre à droite), là où le fort courant ascendant permet à l'humidité des parcelles d'air en convection de ne se condenser qu'à très haut niveau. Ceci donne sur une coupe horizontale (PPI ou CAPPI) une forme à bas niveau d'écho en crochet (gauche) à l'image radar et un fort gradient de réflectivité près du crochet. Du point de vue circulation de l'air, les zones en bleu sur la figure de gauche montrent où l'air descend dans ce type de nuage donnant des rafales au sol. On remarque que dans le flanc sud, le courant descendant entre en interaction avec le courant ascendant (jaune) et c'est à cet endroit que les tornades peuvent se produire.

Des expériences ont également montré que la densité de coups de foudre à l'intérieur d'un orage supercellulaire donne un trou de foudre dans le courant ascendant et la voûte d'échos faibles.

Types

On note quatre types d'orages supercellaires, classés selon leur intensité de précipitation ou leur extension verticale :

  • Supercellule classique : c'est la forme la plus typique d'une supercellule décrite précédemment.
  • Mini-supercellule (LT pour Low Topped en anglais) :
caractérisée par une hauteur de tropopause plus faible et généralement une EPCD (Energie Potentielle Convective Disponible) plus modérée. Elles se produisent en général dans des conditions atmosphériques plus froides comme au printemps et à l'automne. Le cisaillement et la présence d'un mésocyclone sont par contre bien présents car le cisaillement des vents est alors plus important. Elles sont aussi appelées micro-supercellules.
  • Supercellule à faible précipitation (LP en anglais pour Low Precipitation) :
caractéristique des endroits plus secs comme les Prairies canadiennes et les Grandes Plaines américaines, elles ont une base très haute au-dessus du sol et une grande extension verticale mais leur dimension horizontale est faible. Le taux de précipitation vu au radar, dans le nuage et sous celui-ci, est peu élevé et il est souvent difficile d'y voir une rotation. Toutefois, il peut se produire une chute de gros grêlons qui engendrent peu d'échos radar. La colonne de pluie est séparée de la zone en rotation et de celle de grêle. Ces cellules orageuses peuvent donner tous les éléments violents mentionnés antérieurement mais le plus probale est la grêle;
  • Supercellule à forte précipitation (HP pour Hight Precipitation en anglais) :
elles se forment dans un environnement riche en humidité. Elles sont plus étendues horizontalement, leur base est le plus souvent obscurcie par la pluie et on ne distingue souvent pas les zones de pluie, grêle et de rotation. Ils donnent surtout des pluies torrentielles, des rafales descendantes et des tornades faibles à modérées, mais sont très dangereuses car les tornades sont dans une supercellule HP noyées dans le coeur des précipitations, ce qui rend la tornade presque invisible. La grêle y est moins probable.

Lignes de grain et derecho

Vues en coupe verticale et horizontale des précipitations et de la circulation de l'air dans une ligne de grain

Lorsque des orages isolés se rassemblent en une ligne et que cette ligne se déplace avec le vent moyen dans l’atmosphère, on a affaire à une ligne de grain dont l’extrême est le derecho. Une telle ligne produit un front de rafales qui s’organise en ligne à l’avant de la convection. Il est renforcé par la subsidence du courant-jet des niveaux moyens qui est rabattu vers le sol. En effet, l'entrée de ce dernier dans le nuage y amène de l'air froid et sec de l’environnement ce qui est en équilibre négatif selon la poussée d'Archimède.

La coupe horizontale à travers une telle ligne, dans le haut de l'image, montre donc de forts gradients de réflectivité (taux de précipitations) sur l’avant de la ligne. Sur la partie du bas on voit une coupe horizontal où des encoches derrière la ligne donne une forme ondulée à celle-ci. Ces encoches sont créées là où le jet assèche la précipitation en descendant. Il y a généralement des reformations d’orages en amont de la ligne principale avec la rafale descendante. La coupe verticale montre que les orages sont suivis d'une zone continue et moins intense associé à des précipitations stratiformes et la position du jet de niveau moyen descendant vers le sol.

Selon l'EPCD et le cisaillement des vents avec l'altitude, une ligne de grain donnera des vents plus ou moins forts le long de la ligne. Ces vents peuvent être dévastateurs. Les pluies diluviennes ne durent que très peu de temps au passage de la ligne mais des quantités importantes peuvent persister dans la partie stratiforme à l'arrière. Les autres phénomènes violents comme la grêle et les tornades sont plus rares.

Complexe convectif de mésoéchelle

Complexe orageux se formant généralement en fin de journée à partir d'orages dispersés. Il atteint son apogée durant la nuit alors qu'il s'organise comme une large zone circulaire. On les définis comme ayant:

  • Sommet des nuages ayant une température inférieure à -32°C et une surface d'environ 150 000 km².
  • Durée de plus de 6 heures.
  • Rapport entre les diamètres nord-sud et est-ouest doit s'approcher de 1.

Ces systèmes sont fréquents dans les plaines américaines durant l'été. Ils dérivent durant la nuit dans le flux d'altitude et donnent principalement des précipitations intenses causant des inondations sur de larges régions. De la fin avril à octobre 1993, les inondations qui ont sévi tout le long du bassin du fleuve Mississippi, des Grands Lacs à la Nouvelle-Orléans, ont été en grande partie causées par des CCM à répétition durant plusieurs semaines au début de l'été (Inondation du Midwest américain de 1993)

Page générée en 0.300 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise