Opérateur différentiel - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Définition d'un opérateur différentiel

Définition

Un opérateur différentiel linéaire d'ordre m est défini par :

 \mathfrak{D} \ = \ \sum_{|\alpha| = 0}^m \ a_{\alpha}(x) \ \mathrm D^{\alpha}

où les aα(x) sont des fonctions de n variables, appelées coefficents de l'opérateur \mathfrak{D} .

Propriété de localité

Un opérateur différentiel \mathfrak{D} est local au sens où, pour déterminer ses effets  \mathfrak{D} \, f(x) sur une fonction f(x) suffisamment différentiable, seule la connaissance de la fonction dans le voisinage du point x est nécessaire.

Exemples importants pour la physique théorique

La physique théorique fait un usage abondant de trois opérateurs d'ordre 2 :

Opérateur laplacien

L'opérateur laplacien est un opérateur elliptique, qui s'écrit :

  • soit en coordonnées cartésiennes tridimensionnelles :
     \Delta \ = \ \frac{\partial^2 ~~}{\partial x^2} \ + \  \frac{\partial^2 ~~}{\partial y^2} \ + \ \frac{\partial^2 ~~}{\partial z^2}

Cet opérateur est notamment utilisé en mécanique newtonienne, en électromagnétisme, et en mécanique quantique non relativiste.

Opérateur d'alembertien

L'opérateur d'alembertien est un opérateur hyperbolique, qui s'écrit en coordonnées cartésiennes (x,t) dans \R^{n+1}  :

\Box  \ = \ \frac{1}{c^2} \ \frac{\partial^2 ~~}{\partial t^2} \ - \ \Delta

Δ est le laplacien à n variables d'espace, t est le temps, et c une constante positive, homogène à une vitesse. Cet opérateur est utilisé pour décrire la propagation des ondes à la vitesse c dans l'espace-temps. Il est notamment utilisé en acoustique, en électromagnétisme, et en théorie quantique des champs.

Opérateur de la chaleur

L'opérateur de la chaleur, qui s'écrit en coordonnées cartésiennes (x,t) dans \R^{n+1}  :

 \frac{\partial ~}{\partial t} \ - \ \tilde{D} \ \Delta

Δ est le laplacien à n variables d'espace, t est le temps, et \tilde{D} est ici une constante, appelée coefficient de diffusion. Cet opérateur est dit parabolique.

Classification des opérateurs différentiels

Opérateur elliptique

L'opérateur différentiel  \mathfrak{D} est dit elliptique au point  x \ \in \ \Omega si et seulement si :

\forall \ \xi \ \in \ \R^n \backslash \{ 0\} \ , \quad \sigma_m (x, \xi) \ \ne \ 0

 \mathfrak{D} est dit elliptique dans Ω s'il est elliptique pour tout point  x \ \in \ \Omega .

Opérateur hyperbolique

L'opérateur différentiel  \mathfrak{D} est dit hyperbolique dans la direction η au point  x \ \in \ \Omega si et seulement si : \sigma_m (x, \eta) \ne  0 et si, pout tout ξ non colinéaire à η, les racines λi de l'équation :

\sigma_m (x, \ \xi \ + \ \lambda \, \eta) \  = \ 0

sont toutes réelles. Si, de plus, les m racines réelles sont toutes distinctes, l'opérateur  \mathfrak{D} est dit strictement hyperbolique dans la direction η.

 \mathfrak{D} est dit (strictement) hyperbolique dans la direction η dans Ω s'il est strictement hyperbolique dans la direction η pour tout point  x \ \in \ \Omega .

Cas général

On a vu que plus haut :

(\mathfrak{D} \,f)(x)  \ = \ \int_{\mathbb{R}^n} \mathrm d \tilde{\xi} \ e^{+ \, i \, < \, \xi \, , \, x \, >} \ \sigma (x,\xi) \ \hat{f}(\xi)

Pour un opérateur différentiel dont les coefficients aα(x) ne sont pas constants, le symbole σ(x,ξ) dépend des coordonnées d'espace x, et on a  :

(\widehat{\mathfrak{D} \, f})(\xi) \ \ne  \ \sigma (x,\xi) \ \hat{f}(\xi)

Expression de la transformée de Fourier

Partons de la relation générale :

(\mathfrak{D} \,f)(x)  \ = \ \sum_{|\alpha| = 0}^m \ a_{\alpha}(x) \ \int_{\mathbb{R}^n} \mathrm d \tilde{\xi} \ e^{+ \, i \, < \, \xi \, , \, x \, >} \  \xi^{\alpha}  \ \hat{f}(\xi)

Si l'on introduit la transformée de Fourier des coefficients :

a_{\alpha}(x) \ = \ \int_{\mathbb{R}^n} \mathrm d \tilde{\eta} \ e^{+ \, i \, < \, \eta \, , \, x \, >} \ \hat{a}_{\alpha}(\eta)

on obtient :

(\mathfrak{D} \,f)(x)  \ = \ \sum_{|\alpha| = 0}^m \  \int_{\mathbb{R}^n} \mathrm d \tilde{\eta} \ e^{+ \, i \, < \, \eta \, , \, x \, >} \ \hat{a}_{\alpha}(\eta) \ \times \ \int_{\mathbb{R}^n} \mathrm d \tilde{\xi} \ e^{+ \, i \, < \, \xi \, , \, x \, >} \  \xi^{\alpha}  \ \hat{f}(\xi)

soit :

(\mathfrak{D} \,f)(x)  \ = \ \sum_{|\alpha| = 0}^m \  \int_{\mathbb{R}^n} \mathrm d \tilde{\eta} \ \int_{\mathbb{R}^n} \mathrm d \tilde{\xi} \ e^{+ \, i \, < \, (\xi + \eta ) \, , \, x \, >} \ \hat{a}_{\alpha}(\eta) \  \xi^{\alpha}  \ \hat{f}(\xi)

A ξ fixé, on fait le changement de variable :  \eta \to t = \xi + \eta , ce qui donne :

(\mathfrak{D} \,f)(x)  \ = \ \sum_{|\alpha| = 0}^m \  \int_{\mathbb{R}^n} \mathrm d \tilde{t} \ e^{+ \, i \, < \, t \, , \, x \, >} \ \int_{\mathbb{R}^n} \mathrm d \tilde{\xi} \  \hat{a}_{\alpha}(t - \xi) \  \xi^{\alpha}  \ \hat{f}(\xi)

On reconnait le produit de convolution :

 \left( \, \hat{a}_{\alpha} \ * \  \xi^{\alpha}  \ \hat{f} \, \right)(t) \ = \ \int_{\mathbb{R}^n} \mathrm d \tilde{\xi} \ \hat{a}_{\alpha}(t - \xi) \  \xi^{\alpha}  \ \hat{f}(\xi)

d'où :

(\mathfrak{D} \,f)(x)  \ = \ \sum_{|\alpha| = 0}^m \  \int_{\mathbb{R}^n} \mathrm d \tilde{t} \ e^{+ \, i \, < \, t \, , \, x \, >} \ \left( \, \hat{a}_{\alpha} \ * \  \xi^{\alpha}  \ \hat{f} \, \right)(t)

qu'on peut réécrire :

(\widehat{\mathfrak{D} \, f})(\xi) \ =  \  \sum_{|\alpha| = 0}^m \ \left( \, \hat{a}_{\alpha} \ * \  \xi^{\alpha}  \ \hat{f} \, \right)(\xi )

Opérateur différentiel à coefficients constants

Si les coefficients aα sont indépendants des n variables d'espace xk, le symbole de l'opérateur différentiel  \mathfrak{D} d'ordre m est seulement une fonction σ(ξ) des n variables ξ polynomiale en ξ :

\sigma (\xi) = \sum_{|\alpha| = 0}^m \ a_{\alpha} \ \xi^{\alpha}

de telle sorte que :

(\widehat{\mathfrak{D} \, f})(\xi) \ =  \ \sigma (\xi) \ \hat{f}(\xi)

Le symbole principal de l'opérateur différentiel  \mathfrak{D} d'ordre m à coefficients constants est la fonction des n variables ξ :

\sigma_m (\xi) = \sum_{|\alpha| = m} \ a_{\alpha} \ \xi^{\alpha}
Page générée en 0.103 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise