En mathématiques, un nombre transcendant sur les rationnels est un nombre réel ou complexe qui n'est racine d'aucune équation polynomiale :
où
Les nombres transcendants ne sont donc jamais rationnels. Néanmoins, tous les nombres irrationnels ne sont pas transcendants : la racine carrée de 2 est irrationnelle, mais est une solution de l'équation polynomiale
L'ensemble de tous les nombres transcendants est non dénombrable. La démonstration est simple : puisque les polynômes à coefficients entiers sont dénombrables, et puisque chacun de ces polynômes possède un nombre fini de zéros, l'ensemble des nombres algébriques est dénombrable. Mais l'argument de la diagonale de Cantor établit que les nombres réels (et par conséquent les nombres complexes aussi) sont non dénombrables, donc l'ensemble de tous les nombres transcendants doit être non dénombrable. En d'autres termes, il y a beaucoup plus de nombres transcendants que de nombres algébriques. Néanmoins, seules peu de classes de nombres transcendants sont connues et prouver qu'un nombre donné est transcendant peut être extrêmement difficile.
Résultats : considérons l'ensemble A des nombres algébriques réels. Alors :
Leibniz fut probablement la première personne à croire en l'existence des nombres qui ne satisfont pas les polynômes à coefficients rationnels. Le nom « transcendant » vient de Leibniz dans sa publication de 1682 où il démontra que sin(x) n'est pas une fonction algébrique de x. L'existence des nombres transcendants fut prouvée pour la première fois en 1844 par Joseph Liouville, qui montra des exemples, incluant la constante de Liouville :
dans laquelle le n-ième chiffre après la virgule est 1 si n est une factorielle (l'un des nombres 1, 2, 6, 24, 120, 720, etc.) et 0 sinon ; ce nombre est particulièrement bien approché par les nombres rationnels. Joseph Liouville montra que les nombres ayant cette propriété (que nous nommons maintenant nombres de Liouville) sont tous transcendants ; on trouvera cette démonstration à l'article consacré à ces nombres.
Johann Heinrich Lambert, dans son article prouvant l'irrationalité de
En 1882, Ferdinand von Lindemann publia une démonstration de la transcendance de
En 1900, David Hilbert a posé une importante question à propos des nombres transcendants, connue sous le nom de septième problème de Hilbert : « Si a est un nombre algébrique non nul et différent de 1 et si b est un nombre algébrique irrationnel, alors le nombre
Ce travail fut étendu par Alan Baker dans les années 1960.