Nombre parfait - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Notions apparentées

Si la somme des diviseurs est plus petite que le nombre, ce nombre est dit déficient. Dans le cas où la somme est plus grande, le nombre est dit abondant. Ces termes sont issus de la numérologie grecque. Un couple de nombres dont chacun est la somme des diviseurs de l'autre est dit amical, les cycles plus étendus sont dits sociables. Un entier positif tel que chaque entier inférieur est la somme de diviseurs distincts du premier nombre est dit pratique.

Propriétés mineures

Comme on l'a vu précédemment les nombres parfaits pairs ont une forme bien précise et les nombres parfaits impairs sont rares si tant est qu'ils existent. Il existe un certain nombre de propriétés simples à démontrer sur les nombres parfaits :

  • Un nombre parfait impair n'est pas divisible par 105 (Kühnel 1949).
  • Un nombre parfait impair est de la forme 12m + 1 ou 324m + 81 ou 468m + 117 (Roberts 2008).
  • Le seul nombre parfait pair de la forme x3 + 1 est 28 (Makowski 1962).
  • Un nombre de Fermat ne peut être parfait (Luca 2000).
  • La somme des inverses des diviseurs d'un nombre parfait vaut 2:
    • Pour 6, 1 / 6 + 1 / 3 + 1 / 2 + 1 / 1 = 2;
    • Pour 28, 1 / 28 + 1 / 14 + 1 / 7 + 1 / 4 + 1 / 2 + 1 / 1 = 2
  • Le nombre de diviseurs d'un nombre parfait (pair ou impair) est pair, puisque N ne peut être un carré parfait).
    • De ces deux résultats on déduit que tout nombre parfait est un nombre à moyenne harmonique entière.
Page générée en 0.075 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise