D'après le principe de Gause deux espèces (sauf dans le cas d'espèces symbiotes) ne peuvent occuper une même niche écologique durablement. En effet, il en résulte une compétition et les lois de la sélection naturelle tendent à favoriser celle qui est la mieux adaptée à la niche (c'est-à-dire celle qui dans ces conditions peut se reproduire le plus efficacement).
Des espèces différentes peuvent occuper des niches fonctionnellement identiques mais géographiquement séparées. Deux espèces peuvent occuper un même territoire , mais dans des niches écologiques différentes.
Deux espèces peuvent aussi occuper des niches écologiques chevauchantes dans l'espace et/ou dans le temps, c'est-à-dire que seulement une partie des dimensions de l'hypervolume de Hutchinson sont occupées de manière simultanée. On parle alors de recouvrement, et s'il n'est pas trop important, les deux espèces peuvent cohabiter. Il en résulte une compétition interspécifique qui peu réduire les effectifs de chacune des deux populations par rapport à celui qu'elles auraient en occupant seule toutes les dimensions. Les ressources disponibles étant un facteur limitant à considérer dans les évaluations de cet ordre.
Pour qu'il y ait coexistence (de deux espèces au moins), il faut :
L'écotone délimitant deux habitats peut être une niche écologique pour les espèces typiques de ces milieux, tout en accueillant épisodiquement des espèces typiques des habitats adjaçants. Ces dernières y voient toutefois généralement leurs fitness (chances de survie) diminuées.
Régle évolutive au sein d'une convergence évolutive :
Un organisme peut occuper successivement ce qui apparait comme différentes niches écologiques, en fonction de son stade de développement ou de l'évolution de son environnement (Par exemple, certains organismes saproxylophages vivent en communautés qui se déplacent dans un tronc au rythme de sa décomposition, dont elles sont une partie des agents). On peut aussi considérer qu'il s'agit d'une seule niche écologique qu'on peut subdiviser selon leur position dans l'espace et/ou dans le temps de vie de l'espèce.
Les espèces pionnières peuvent occuper des niches écologiques qu'elles trouvent et qui leur sont appropriées, ou plus souvent, elles participent activement à leur construction et entretien. De nombreuses espèces « construisent » activement leur niche écologique ; ainsi les sphaignes en stockant les ions calcium acidifient le milieu à leur profit et au détriment d'autres espèces, sauf celles qui peuvent se développer dans un milieu acide et oligotrophe.
Le tube digestif d'un animal est la niche écologique du microbiote (la communauté de microorganismes (neutres, symbiotes ou parasites) à l'égard de leur hôte.
Les espèces très spécialisées sont plus dépendantes d'une niche écologique réduite, mais qu'elles exploitent a priori mieux.
Actuellement, les enjeux liés à la biodiversité prennent une importance majeure. Il devient donc nécessaire de mettre en oeuvre des outils permettant d'exercer des mesures de conservation de la biodiversité. Dans le cadre de la conservation d'une espèce, ces outils impliquent obligatoirement la conservation de sa niche écologique. En effet, cette dernière regroupe tous les facteurs écologiques nécessaires à la survie d'une espèce.
La modélisation des niches écologiques (ENM) est un outil important pour l'évaluation de la conservation des espèces. Il existe deux types de modèles, ceux basés sur la physiologie de l'espèce et ceux basés sur les relations empiriques entre les distributions observées d'une espèce et les variables environnementales (modèles corrélatifs). Les modèles physiologiques identifient les mécanismes physiologiques limitant de l'espèce et sont obtenus grâce à des expériences en laboratoire. Ce type de modèle permet en quelque sorte d'estimer la niche fondamentale d'une espèce. Les modèles corrélatifs, les plus utilisés à ce jour, établissent un lien entre la répartition géographique d'une espèce et les caractéristiques de l'habitat. Les plus courant sont Genetic Algorithm for Rule-set Prediction (GARP), BIOCLIM, BIOMAPPER, Maximum entropy (Maxent) et Outlying Mean Index(OMI). Les applications potentielles de ces modèles à la biologie de la conservation sont nombreuses et en voici quelques exemples :
De plus, ces modèles constituent des outils prometteurs dans d'autres domaines tels que la biogéographie, l'autoécologie ou encore l'étude des changements globaux.
La modélisation de niche écologique présente toutefois des limites et il existe des restrictions à bien prendre en considération. Tout d'abord cette modélisation peut être confrontée à des problèmes liés aux contraintes écologiques de l'espèce. Les espèces peu connues ou peu décrites sont souvent celles étudiées dans les problèmes de conservation et le fait que celles-ci soient peu représentées défie l'efficacité des ENM. D'autre part, chaque facteur d'une niche écologique affecte significativement la distribution de l'espèce à une échelle donnée seulement, d'où l'importance de considérer ces échelles dans les problèmes de conservation. Enfin, il est avéré que GARP surestime la distribution de l'espèce plus que les autres modèles et le manque d'informations environnementales pourrait avoir une incidence sur ces résultats. Ces modèles sont donc encore largement optimisables (par exemple en intégrant les processus de migration, les interactions biotiques ou en utilisant des nouvelles sources d'informations telles que l'imagerie satellite).
Bon nombre de méthodes de sélection de réserves se basent sur les résultats de ces modèles et cherchent à maximiser la quantité de biodiversité qui peut être représentée dans les réseaux d'aires de conservation. Le changement climatique pose un nouveau défi pour ces méthodes de sélection, défi lié au problème de la persistance des espèces à long terme dans ces réserves et lié aux facultés de migration de ces espèces. Il se pourrait en effet que le changement climatique "pousse" les espèces hors des réserves qui leurs sont consacrées. Il est donc temps de penser à des méthodes de sélection de réserves "nouvelle-génération" qui prendront en compte les besoins de dispersion des espèces dus au changement climatique.