Neutrino - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Les télescopes à neutrinos

Notre ciel a toujours été observé à l’aide des photons à des énergies très différentes allant des ondes radios aux rayons gamma. L’utilisation d’une autre particule pour observer le ciel permettrait d’ouvrir une nouvelle fenêtre sur l’Univers. Le neutrino est pour cela un parfait candidat :

  • il est stable et ne risque pas de se désintégrer au cours de son parcours ;
  • il est neutre et n’est donc pas dévié par les champs magnétiques. Il est donc possible de localiser approximativement la direction de sa source ;
  • il possède une très faible section efficace d’interaction et peut ainsi s’extirper des zones denses de l’univers comme les abords d’un trou noir ou le cœur des phénomènes cataclysmiques (il faut préciser que les photons que nous observons des objets célestes ne nous proviennent que de la surface des objets et non pas du cœur) ;
  • il n’interagit que par interaction faible et transporte ainsi des informations sur les phénomènes nucléaires des sources, contrairement au photon qui est issu de processus électromagnétiques.

Une nouvelle astronomie complémentaire est ainsi en train de se créer depuis une dizaine d’années.

Un des principes possibles pour un tel télescope est d’utiliser la Terre comme cible permettant d’arrêter les neutrinos astrophysiques. Lorsqu’un neutrino muonique traverse la Terre, il a une faible chance d’interagir et ainsi d’engendrer un muon. Ce muon, s’il a une énergie au-delà d’une centaine de GeV, est aligné avec le neutrino et se propage sur une dizaine de kilomètres dans la Terre. S’il a été créé dans la croûte terrestre, il va pouvoir sortir de la Terre et se propager dans la mer où seraient installés les télescopes à neutrinos. Ce muon allant plus vite que la vitesse de la lumière dans l’eau, il engendre de la lumière Tcherenkov, l’équivalent pour la lumière du bang supersonique. Il s’agit d’un cône de lumière bleutée. Ce type de télescope à neutrinos est constitué d’un réseau tridimensionnel de détecteurs de photons (des photomultiplicateurs) qui permet de reconstruire le cône Tcherenkov, et donc la trajectoire du muon et du neutrino incident, et ainsi la position de la source dans le ciel. La résolution angulaire actuelle est de l’ordre du degré.

Ces télescopes à neutrinos sont déployés dans un grand volume d’eau liquide ou de glace pour que la lumière émise par le muon soit perceptible. Des dimensions de l’ordre du kilomètre cube pour avoir une sensibilité suffisante aux faibles flux cosmiques. Ils doivent être placés sous des kilomètres d’eau pour, d’une part, être dans l’obscurité absolue, et, d’autre part, pour avoir un blindage aux rayons cosmiques qui constituent le bruit de fond principal de l’expérience.

Les télescopes à neutrinos, ces immenses volumes situés aux fonds des eaux et regardant sous nos pieds, constituent une étape majeure dans le développement de l’astrophysique des particules et devrait permettre de nouvelles découvertes en astrophysique, cosmologie, matière noire et oscillations de neutrinos. Sont actuellement en fonctionnement IceCube, en Antarctique, et Antares, dans la mer Méditerranée.

Expériences actuelles

Différentes expériences de physique des particules cherchent à améliorer les connaissances sur les neutrinos, et en particulier sur leurs oscillations. Outre les neutrinos créés par les réactions nucléaires dans le Soleil et ceux venant de la désintégration bêta dans les centrales nucléaires, les physiciens étudient également des neutrinos créés dans les accélérateurs de particules (comme dans les expériences K2K et CNGS).

L’avantage de ce type d’expérience est de contrôler le flux et le moment où les particules sont envoyées. De plus, on connaît leur énergie et la distance qu’elles parcourent entre leur production et leur détection. On peut ainsi se placer aux extremums des oscillations où la mesure des paramètres d’oscillation est la plus précise.

Ainsi, le détecteur OPERA (en), installé dans le tunnel du Gran Sasso en Italie, cherche depuis 2006 à détecter les neutrinos tauiques issus de l’oscillation de neutrinos muoniques générés au CERN, à 732 km. Le 31 mai 2010, la collaboration OPERA a annoncé avoir mis en évidence avec une probabilité de 98 % un évènement de ce type, ce qui serait la première constatation d’une oscillation vers le neutrino tauique.

En 2010, plusieurs autres expériences devraient débuter :

  • T2K, situé au Japon, utilise un faisceau de neutrinos créé par l’accélérateur JPARC à Tokai. À la manière de son prédécesseur K2K, il détecte le flux de neutrinos par un ensemble d’appareils complémentaires à 280 m du point de création du faisceau, puis observe les neutrinos interagissant à 295 km de là dans Super-Kamiokande, le célèbre détecteur Cerekov à eau. En mesurant l’apparition de neutrinos électroniques dans ce faisceau de neutrinos muoniques, il compléterait pour la première fois la matrice d’oscillation des neutrinos (cf. Oscillation de neutrinos).
  • Double CHOOZ, situé en France (Chooz, Ardennes), utilisera le réacteur nucléaire de Chooz afin d’en détecter les neutrinos électroniques. Un détecteur proche et un lointain permettront de mesurer la différence de flux et ainsi mesurer une disparition de ces neutrinos, disparition caractéristique du phénomène d’oscillation. L’objectif est donc similaire à celui de l’expérience T2K, mais par des méthodes complémentaires.

Mais les oscillations ne sont pas la seule préoccupation des scientifiques : l’expérience KATRIN, installée en Allemagne, cherche quant à elle à mesurer directement la masse du neutrino, par l’étude du spectre de désintégration bêta du tritium.

Page générée en 0.097 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise