Navette spatiale américaine - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Le déroulement d'une mission

Préparation

La navette Atlantis dans le VAB

L'orbiteur après avoir subi une révision dans l'un des trois bâtiments dédiés à sa maintenance (les Orbiter Processing Facility OPF) au Centre Spatial Kennedy en Floride, y reçoit une partie de la charge utile de la mission à venir ; les consommables sont également chargés. L'orbiteur est pesé et son centre de gravité est déterminé pour une prise en compte dans les paramètres de vol. L'orbiteur est ensuite déplacé jusqu'à l'immense bâtiment d'assemblage construit pour les fusées Saturn V du programme Apollo et dont deux baies sont dédiées à la préparation en parallèle des navettes. Deux autres baies sont utilisées pour garer les orbiteurs et stocker du matériel. Le réservoir externe et les deux propulseurs d'appoint sont installés en position verticale sur la table de lancement mobile (Mobile launcher platform ou MLP) qui va être utilisée pour déplacer la navette jusqu'à l'aire de lancement et servira de support au moment du tir. L'orbiteur est hissé à la verticale à près de 100 mètres de hauteur à l'aide de deux ponts roulants de 200 tonnes puis abaissé pour être boulonné au réservoir externe. Des plateformes mobiles sont alors mises en place pour permettre de travailler sur la navette. Les liaisons mécaniques et électriques entre les trois composants de la navette sont vérifiés et testés. Les liaisons avec les installations au sol sont également contrôlées. L'ensemble de ces vérifications prend théoriquement 6 jours.

La navette Atlantis est transportée sur le véhicule à chenilles jusqu'au pas de tir

Le véhicule sur chenilles chargé de transporter la navette jusqu'au lieu du lancement est alors glissé sous la plateforme de lancement mobile puis l'ensemble franchit les portes du VAB et se met en route à petite vitesse (moins de 2 km.h-1) jusqu'à l'un des deux pas de tir aménagés pour la navette. Le véhicule, qui est également un héritage du programme Apollo, est équipé d'un système de vérins qui maintient la navette à la verticale lorsque l'ensemble doit gravir la rampe de 5 % qui mène au pas de tir. La destination est atteinte au bout de 6 heures ; la plateforme mobile est alors abaissée sur des trépieds et le véhicule sur chenilles est retiré. Chacun des deux pas de tir (39A et 39B) comporte une structure qui permet d'achever la préparation de la navette : celle-ci est composé d'une tour métallique fixe (Fixed service structure ou FSS) et d'une partie mobile (Rotaring service structure) qui y est attachée et pivote de 120° pour venir se plaquer contre la baie cargo de l'orbiteur. La partie fixe comporte des lignes d'alimentation en ergols et fluides divers ainsi qu'une passerelle qui permet à l'équipage de pénétrer dans la navette. La partie mobile comporte 5 niveaux de plateforme qui permettent de travailler sur la baie cargo dans un environnement contrôlé. Elle permet également d'accéder aux nacelles des moteurs.

La charge utile d'une navette comprend souvent un grand nombre de composants, dont certains sont destinés à rester en orbite comme les composants de la station spatiale internationale ou le ravitaillement de son équipage permanent, et d'autres qui reviennent à Terre comme les conteneurs ou structures destinées à transporter le fret. Tous les éléments de la charge utile sont vérifiés, conditionnés et installés au centre spatial Kennedy. Une partie est installée lorsque l'orbiteur est à l'horizontale dans l'OPF, le reste l'est sur le pas de tir. Le chargement des carburants est préparé. Les portes de la baie cargo sont refermées. La dernière tâche est une répétition du lancement qui est effectuée avec les astronautes installés dans l'orbiteur et équipés de leur combinaison spatiale. Le compte à rebours commence 47 heures avant le lancement par une vérification générale des systèmes et des logiciels de vol par les opérateurs installés dans l'une des salles de lancement. À T-11 heures (T = instant du décollage) la structure mobile (RSS) est écartée, l'aire de lancement est évacuée et le chargement de l'hydrogène et de l'oxygène liquide dans le réservoir externe commence.

Lancement

Déroulement normal d'un vol de navette spatiale et scénarios d'interruption

Trois heures avant le lancement les astronautes s'installent dans la navette spatiale. Entre T-3 minutes et T-2 minutes (T = instant du décollage) les réservoirs d'hydrogène et d'oxygène sont mis sous pression puis les SSME sont mis à la température des ergols. Si aucun problème n'est détecté durant le compte à rebours, les SSME sont allumés à T-3 secondes. Sous la poussée des moteurs les boosters qui solidarisent la navette avec la plateforme ploient légèrement et la navette s'incline de 2 mètres au niveau du poste de pilotage avant de revenir à la verticale. Si après allumage l'un des moteurs SSME n'a pas atteint 90 % de sa puissance nominale, le lancement est interrompu. Lorsque le fonctionnement des moteurs-fusée est normal les propulseurs à poudre sont allumés au moment précis où la navette est revenue à la verticale (instant T). La navette spatiale s'élève en prenant rapidement de la vitesse car le rapport poussée / masse totale est largement supérieur à 1 contrairement par exemple à la fusée Saturn V. Dès que la vitesse a dépassé 39 m.s-1, au bout d'environ 7 secondes, la navette prend une orientation correspondant au plan orbital visé (57° par exemple pour une mission vers la station spatiale internationale). La navette effectue un tonneau pour présenter le ventre de l'orbiteur vers le ciel : dans cette position les moteurs peuvent maintenir une incidence négative en limitant la pression aérodynamique sur les ailes de l'orbiteur. La poussée des SSME est réduite jusqu'à 67 % au fur et à mesure que la pression aérodynamique s'accroît. La pression aérodynamique maximale Max Q, est atteinte 60 secondes après le décollage. À T+65 secondes la poussée des SSME est progressivement augmentée jusqu'à atteindre 104 % de la poussée nominale.

Environ 120 secondes après le décollage, les deux propulseurs d'appoint sont largués : les liaisons sont coupées par des charges pyrotechniques et huit petits moteurs-fusée écartent les boosters du réservoir externe. Chaque propulseur d'appoint continue à monter durant 75 secondes sur sa lancée jusqu'à atteindre son apogée puis retombe ; parvenu à une altitude de 48 km, 225 secondes après la séparation, la pointe supérieure est éjectée puis un parachute pilote se déploie pour stabiliser le propulseur et enfin trois parachutes principaux s'ouvrent réduisant la vitesse à 25 mètres par seconde au moment de l'amerrissage. Celui-ci se produit dans l'Océan Atlantique à environ 261 km de la base de lancement. Les propulseurs sont récupérés par deux navires de la NASA et remis en condition pour un vol suivant. L'orbiteur continue à prendre de la vitesse en utilisant uniquement les SSME. Désormais l'orbiteur a traversé la partie la plus dense de l'atmosphère. Il effectue un nouveau tonneau environ 6 minutes après le décollage pour présenter ses antennes de télécommunications vers le zénith ce qui permet à l'équipage de communiquer avec le centre de contrôle par l'intermédiaire des satellites TDRS en orbite géostationnaire. Sa vitesse est alors de 3,7 km.s-1.

Les installations fixes sur le pas de tir

Sept minutes après le décollage, la poussée des SSME est réduite pour ne pas dépasser 3 g d'accélération. Huit minutes et 20 secondes après le décollage les SSME sont arrêtés (MECO : Main engine Cutoff) : l'arrêt est normalement déclenché par l'arrivée à un point préfixé de la trajectoire mais ce point ne peut avoir été atteint auquel cas c'est l'épuisement des ergols qui déclenche l'arrêt des moteurs. Le réservoir externe est largué : les moteurs de correction orbitale sont utilisés pour écarter la navette de la trajectoire du réservoir.

La navette a alors une vitesse de 7,6 km.s-1 mais sa vitesse est encore trop faible par rapport a sa basse altitude pour lui permettre de rester en orbite. Le réservoir d'ailleurs suit une trajectoire balistique et effectue bientôt une rentrée atmosphérique durant laquelle il est détruit. Ses débris tombent dans le sud de l'Océan Pacifique lorsque la navette effectue une mission à destination de la station spatiale internationale (inclinaison de 57°). La navette utilise ses moteurs de correction orbitale (OMS) pour ne pas subir le même sort et se placer sur l'orbite visée. Celle-ci est comprise, selon les missions, entre 250 et 650 km. La navette peut effectuer une ou deux corrections selon sa mission pour se placer en orbite : la première effectuée typiquement 2 minutes après l'extinction des moteurs principaux, permet à la navette de gagner son apogée cible, la seconde circularise l'orbite. Si la deuxième manœuvre n'est pas effectuée, la trajectoire est dite avec « insertion directe ».

Scénarios d'interruption de la mission durant le lancement

La navette en position de lancement

Lorsque la navette est au sol, le lancement peut être interrompu tant que les propulseurs d'appoint n'ont pas été mis à feu. Si les SSME sont allumés puis éteints après la détection d'une défaillance, le problème le plus grave est la présence potentielle d'hydrogène gazeux à l'extérieur des tuyères des moteurs qui peut brûler sans que la flamme soit visible. Des caméras spéciales permettent de détecter ce type de situation. Il existe quatre procédures différentes d'évacuation des astronautes pour couvrir tous les cas de figure. Les astronautes sont entraînés à évacuer la navette et à descendre rapidement à l'aide d'une nacelle jusqu'à un blockhaus situé à proximité.

Une fois les propulseurs d'appoint allumés le décollage ne peut plus être interrompu. Si à la suite d'un dysfonctionnement, la trajectoire de la navette sort de l'enveloppe de vol normale et menace une zone d'habitation, des charges explosives placées dans les propulseurs d'appoint et le réservoir externe dont le déclenchement est confié à l'armée de l'Air américaine permettent de faire exploser ceux-ci avant qu'ils ne touchent le sol. Dans tous les cas la séparation de l'orbiteur sera tentée avant d'enclencher les explosifs.

À partir du moment où les propulseurs d'appoint ont été largués (T+120 secondes T=lancement), il existe plusieurs scénarios d'interruption de mission :

Retour au site de lancement (Return to launch site ou RTLS)

En cas de perte partielle de propulsion entre le moment où les propulseurs d'appoint sont largués et T+260 secondes, le scénario d'abandon consiste à regagner la piste d'atterrissage du centre de lancement Kennedy. La navette poursuit sa trajectoire initiale avec les moteurs qui sont encore opérationnels puis réalise un demi-tour et effectue un vol propulsé avec une assiette négative de manière à se rapprocher du terrain d'atterrissage. L'objectif est de vider le réservoir extérieur et d'être positionné au point idéal permettant d'atteindre la piste en vol plané.

Interruption avec vol transatlantique (Transoceanic Abort Landing TAL)

Ce scénario s'applique au delà de T+260 secondes et si le carburant restant ne permet pas d'atteindre une orbite minimale. Il ne reste pas assez de carburant pour effectuer un demi-tour et revenir au point de départ. Dans ce cas de figure la navette effectue un vol suborbital qui permet à l'orbiteur d'aller se poser sur une piste située de l'autre côté de l'Atlantique environ 45 minutes après son lancement. Pour un mission avec une inclinaison de 57° à destination de la station spatiale internationale deux aéroports situés en Europe ont été sélectionnés : la base aérienne américaine de Moron près de Séville en Espagne et la base aérienne d'Istres dans le sud de la France. Sur ces deux bases des équipements destinés à guider la navette à son atterrissage sont installés en permanence et des équipes de la NASA sont prépositionnées environ 8 jours avant chaque lancement

Décollage (STS-114)
Interruption avec une orbite bouclée (Abort Once Around AOA)

Ce scénario s'applique lorsque l'orbiteur est capable d'atteindre une orbite mais ne pourra s'y maintenir par la suite car celle-ci est trop basse. Dans ce cas de figure, la navette boucle une orbite complète puis entame la rentrée atmosphérique en appliquant la procédure normale.

Interruption avec mise en orbite (Abort to Orbit ATO)

Ce scénario s'applique au cas où l'orbiteur perd une partie de sa propulsion mais qu'il a suffisamment de vitesse pour se mettre sur une orbite viable mais qui n'est pas celle visée. L'orbiteur peut toutefois utiliser ses moteurs de correction d'orbite pour atteindre la bonne orbite. Selon le cas de figure la mission est poursuivie ou du fait de marges d'ergols insuffisantes, elle est interrompue et la rentrée atmosphérique est déclenchée normalement au cours d'une orbite suivante.

Abandon de l'orbiteur (Contingency abort CA)

Si plus d'un SSME est en panne ou qu'un autre composant jouant un rôle essentiel a une défaillance, la navette ne peut choisir une nouvelle trajectoire lui permettant de se poser sur une piste, ni se mettre en orbite : un plan de secours (Emergency abort) est mis en œuvre et l'équipage doit évacuer l'orbiteur. Pour les quatre premières missions de la navette, les deux pilotes disposaient d'un siège éjectable utilisable en-dessous de mach 2,7 et de 24 km mais ceux-ci ont été retirés par la suite et de toute façon les autres membres de l'équipage n'auraient pu disposer du même équipement. La décision d'évacuer doit être prise alors que l'orbiteur est à 20 km d'altitude. L'autopilote est branché et un programme de navigation dédié est activé. L'évacuation se fait par l'écoutille d'entrée située au niveau du pont intermédiaire. L'évacuation n'est possible que si la vitesse de l'orbiteur est inférieure à 426 km.h-1 et l'altitude inférieure 10 km. Un système pyrotechnique est mis à feu pour faire sauter l'écoutille et une perche télescopique de 3 mètres de long s'incurvant fortement vers le bas est déployée. Chaque membre de l'équipage, équipé de son parachute, accroche à son équipement une ligne qui coulisse sur la perche terminée par un mousqueton avant de sauter dans le vide. La perche doit le guider au début de son saut et lui permettre d'éviter d'être happé par l'aile de l'orbiteur. Il a été calculé qu'un équipage de 8 personnes pouvait être évacué en 90 secondes à raison de 12 secondes par astronaute, l'orbiteur se trouvant à 3 km à la fin de l'évacuation.

À cinq reprises (STS-41-D, STS-51-F, STS-55, STS-51, STS-68) le lancement d'une mission a dû être interrompu à la suite de la détection d'une défaillance d'un moteur quelques secondes avant le décollage alors que les moteurs de la navette avaient été allumés. La seule procédure d'abandon en vol durant toute la carrière de la navette a été déclenchée par la mission STS-51-F à la suite de l'arrêt du moteur central de l'orbiteur après 5 minutes 45 s de vol : la navette a suivi la procédure relativement bénigne d'interruption avec mise en orbite (Abort to Orbit) et la mission put finalement être accomplie.

Le retour sur Terre

Pour son retour sur Terre l'équipage de l'orbiteur privilégie un atterrissage au centre spatial Kennedy où se trouvent la base de lancement et les installations de maintenance. Pour pouvoir se poser un certain nombre de conditions météorologiques doivent être réunies : la couverture nuageuse sous 2 500 mètres doit être inférieure à 50 %, la visibilité doit être supérieure à 8 km, les vents traversiers sur une des deux pistes doivent être inférieurs à 28 km.h-1 si l'orbiteur atterrit de jour et 14 km.h-1 si l'atterrissage a lieu de nuit. Il ne doit pas y avoir d'orage ou de pluie dans un rayon de 50 km autour du lieu d'atterrissage. Si ces conditions ne sont pas réunies le séjour en orbite peut être prolongé, selon la mission, de un à quelques jours. Si les conditions météorologiques défavorables persistent, l'atterrissage a lieu à la base aérienne d'Edwards en Californie où la météorologie est souvent plus clémente et le nombre de pistes de grande taille fournissent plus d'options. Mais cette solution nécessite de rapatrier ensuite l'orbiteur à l'aide d'un des deux Boeing 747 porteurs de la NASA ce qui engendre un certain risque, un surcoût important et de plus accroît le délai de remise en condition de l'orbiteur. Les premiers atterrissages s'effectuaient à Edwards. Le premier atterrissage à Kennedy, qui a été effectué dans le cadre de la mission STS-41B en 1984, s'est traduit par un pneu éclaté et des freins endommagés. Les atterrissages n'ont repris à Kennedy qu'en 1991 après des travaux d'aménagement de la piste (allongement, reprise du revêtement) et des modifications au niveau du train d'atterrissage, des pneus et des freins des orbiteurs. Un parachute destiné à réduire la distance d'arrêt a été installé dans la queue des navettes. Depuis les atterrissages au centre spatial Kennedy sont la règle.

Pour déclencher le retour sur Terre, la navette doit réduire sa vitesse en utilisant ses moteurs-fusée : cette réduction entraîne à son tour la diminution de son altitude jusqu'à ce que la navette pénètre les couches plus denses de l'atmosphère qui vont à leur tour freiner la navette et lui faire entamer la rentrée atmosphérique. L'énorme quantité d'énergie cinétique accumulée par l'orbiteur durant sa mise en orbite est dissipée sous forme de chaleur pendant cette phase. Le moment du déclenchement est fixé de manière à ce que la trajectoire amène la navette avec la bonne vitesse jusqu'à la piste d'atterrissage choisie.

Atlantis a déployé son parachute pour réduire la distance d'arrêt

La manœuvre qui déclenche la rentrée atmosphérique de la navette est réalisée à un point de l'orbite qui se trouve à l'opposé de la piste d'atterrissage. L'orbiteur va progressivement ralentir jusqu'à atteindre le point où la pression atmosphérique combinée à sa vitesse permettent à ses gouvernes de le diriger. Désormais l'orbiteur, qui ne dispose d'aucun système de propulsion, se comporte comme un planeur que le pilote doit ramener, dans le cas normal, sur la piste d'atterrissage située au centre spatial Kennedy.

Pour amorcer ce processus l'orbiteur est orienté de manière à ce que ses moteurs de correction orbitale soient tournés vers l'avant puis ceux-ci sont allumés de manière à réduire la vitesse de 60 à 150 mètres par seconde selon l'orbite de départ. L'orbiteur est ensuite replacé le nez tourné vers l'avant dans une position cabrée avec une assiette négative d'environ 40°. Cet angle est maintenu entre 37 et 43 degrés en utilisant si nécessaire les moteurs de contrôle d'orientation arrière car les gouvernes, en particulier celles de profondeur, n'ont aucune efficacité dans l'atmosphère ténue. Au delà de 43° l'échauffement serait trop important et le bouclier thermique ne pourrait pas résister. Le pilote adopte des angles de roulis plus ou moins accentués : le pilote peut ainsi à la fois ajuster la longueur de la trajectoire restante en ralentissant (en effectuant des S) ou accélérant (route rectiligne) et déporter la trajectoire vers la droite ou la gauche lorsque la piste ne se trouve pas dans le prolongement de l'orbite. Grâce à ses ailes, l'orbiteur peut ainsi se poser sur une piste située à 1 800 km sur la droite ou la gauche d'une trajectoire rectiligne.

Lorsque la pression aérodynamique dépasse 10 kg.m-2 la gouverne de profondeur peut être utilisée et à Mach 5 c'est au tour de la gouverne de direction. À Mach 1 les moteurs de contrôle d'orientation sont désactivés. La pente de la descente est diminuée progressivement jusqu'à ce qu'elle soit ramenée à 1.4° lorsque l'orbiteur est parvenu à l'altitude de 25 km. La navette a alors une vitesse de 3 148 km.h-1 et se trouve à 128 km de son point d'atterrissage. L'orbiteur entame une phase (Terminal Aera Energy Management TEAM) durant laquelle il va réduire, si c'est nécessaire, sa vitesse en décrivant des S d'un rayon d'environ 5,5 km tout en suivant une trajectoire dont l'axe est tangent à l'un des deux côtés de la piste d'atterrissage. L'orbiteur franchit le mur du son alors qu'il se trouve à une altitude de 15 km et est éloigné de 56 km de la piste d'atterrissage. À environ 10 km de la piste, l'orbiteur entame la descente finale en utilisant l'autopilote avec une pente d'environ 20° (trois fois plus accentuée que celle d'un avion commercial) et en ayant recours aux aérofreins pour contrôler sa vitesse. À 500 mètres d'altitude l'orbiteur redresse pour réduire la pente à 1.5° et le train d'atterrissage est sorti à une altitude de 100 mètres. La piste d'atterrissage de Kennedy a une longueur de 4,5 km et une largeur de 91 mètres.

L'orbiteur touche la piste avec son train d'atterrissage principale en position fortement cabrée sa vitesse est de 472 km.h-1, l'avant commence à s'abaisser lorsque la vitesse tombe sous 343 km.h-1. Un parachute de 12 mètres de diamètre est alors déployé sur l'arrière de l'empennage pour réduire la distance parcourue avant son arrêt complet. Le train d'atterrissage avant touche à son tour le sol lorsque la vitesse est tombée sous 296 km.h-1 et le parachute est largué lorsque la vitesse est inférieure à 56 km.h-1.


Environ 25 véhicules spécialisés et 150 spécialistes sont présents pour prendre en charge l'orbiteur et son équipage immédiatement après son atterrissage. Lorsque l'orbiteur s'immobilise, des équipes au sol en combinaison étanche vérifient l'absence d'ergols toxiques utilisés par les moteurs-fusée, d'hydrogène ou d'ammoniac à l'extérieur de l'orbiteur. Si ce n'est pas le cas un ventilateur est utilisé pour dissiper les gaz et éviter une explosion éventuelle. Des conduites amenant de l'air conditionné sont branchées à l'arrière de l'orbiteur à la fois pour refroidir les parties de la navette qui ont été fortement échauffées durant la rentrée atmosphérique et pour purger la navette de tout gaz toxique. Ces opérations durent moins d'une heure, puis un véhicule vient se placer contre l'écoutille qui est ouverte pour laisser passer l'équipage ; celui-ci après un court examen médical est évacué pour laisser la place à une équipe chargée de préparer l'orbiteur pour les opérations suivantes. Si l'orbiteur a atterri au centre spatial Kennedy, il est tiré vers un des trois bâtiments de maintenance (Orbiter Processing Facility OPF) qui lui est dédié : là les opérations de maintenance sont effectuées. Si l'orbiteur a atterri à la base aérienne d'Edwards il est dirigé vers la grue pour être installé sur le Boeing 747 équipé pour le ramener jusqu'au centre spatial Kennedy.

Les opérations de maintenance

L'orbiteur Atlantis dans un des trois bâtiments de maintenance

L'orbiteur est tiré vers un des trois bâtiments dédiés (les Orbiter Processing Facility OPF) situés au centre spatial Kennedy où se déroulent les opérations de maintenance courantes. L'orbiteur y est placé en position surélevée et plusieurs plateformes mobiles sont mises en position pour permettre d'accéder aux différentes parties de la navette. Après ouverture des portes de la baie cargo, la charge utile de la mission qui vient de s'achever est retirée. Différents circuits et réservoirs sont purgés : circuits moteurs, système de support de vie, climatisation, pile à combustible, réservoirs d'eau. Les moteurs SSME sont démontés pour révision dans un bâtiment dédié (Main Engine Processing Facility). Si nécessaire les nacelles des moteurs OMS et le bloc des moteurs d'orientation avant sont démontés pour être révisés. Le bouclier thermique est examiné tuile par tuile et celles qui sont abîmées ou qui donnent des signes de faiblesse sont remplacées. Les incidents détectés au cours de la mission écoulée sont traités. Le train d'atterrissage, certains composants de la structure et d'autres systèmes sont également inspectés. Des mises à niveau, si elle n'immobilisent pas trop longtemps l'orbiteur, peuvent être réalisées durant cette phase. Les opérations de maintenance et de configuration pour la mission suivante réalisées dans l'OPF durent normalement moins de 100 jours.

Les mises à niveau

Maintenance sur le moteur SSME

Des opérations de maintenance et mise à niveau lourdes sont réalisées périodiquement avec deux objectifs majeurs : limiter les risques et réduire les coûts de maintenance. En 2000 les mises à niveau en cours avaient pour objectif de réduire le risque de perte de la navette durant la phase ascensionnelle de 50 %, durant le séjour en orbite et la retour au sol de 30 % et enfin d'améliorer les informations mises à disposition de l'équipage dans les situations critiques. Ces améliorations devaient à l'époque ramener le risque de perte de la navette de 1/248 à 1/483. Ce risque estimé à 1/78 en 1988 pour le vol STS-26 avait été abaissé à 1/248 essentiellement en intervenant sur les SSME.

Ces opérations sont réalisées au cours de périodes de révision (Orbiter maintenance down period OMDP) d'une durée de 14 mois programmées tous les 8 vols soit environ tous les 3 ans ; elles ont lieu à l'usine Boeing (ex Lockheed) de Palmdale en Californie. Parmi les modifications effectuées durant ces grandes révisions figurent :

  • le renforcement des trains d'atterrissage pour permettre à la navette d'atterrir au centre spatial Kennedy,
  • l'installation du sas et du système d'amarrage dans la baie cargo pour que la navette puisse s'amarrer à la station spatiale Mir,
  • la mise en place d'une planche de bord moderne utilisant des écrans à la place des indicateurs à aiguille dans la cabine de pilotage.
  • L'augmentation de la puissance maximale des moteurs SSME qui est passée après plusieurs modifications à 109 % de la puissance d'origine (mais 104 % utilisable seulement en régime normal).
Page générée en 0.191 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise