Module lunaire Apollo - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Fabrication et tests (1965-1967)

La fabrication des modules lunaires démarre en 1965. Elle porte à la fois sur des modules opérationnels et des versions utilisées pour des tests au sol et en vol. La construction du module lunaire rencontre de graves problèmes de délai, de surpoids et de qualité qui menacent le programme Apollo tout entier. Certain tests en vol devront être repoussés mais l'incendie de la capsule du Module de Commande d'Apollo 1, en repoussant l'échéance, permettra au LEM d'être prêt à temps.

Modules lunaires fabriqués

Quinze modules lunaires seront construits. Sur ce nombre deux d'entre eux ne voleront pas (les LM-2 et LM-9), les trois derniers resteront inachevés à la suite de l'interruption du programme Apollo (les LM-13, LM-14 et LM-15), trois seront utilisés pour les tests en vol (les LM-1, LM-3 et LM-4), enfin le LM-7 ne s'est jamais posé sur la lune à la suite de l'interruption de la mission Apollo 13. Par ailleurs 6 LEM seront construits pour les tests au sol (LTA : Lunar Module Article) : le LTA-2 pour les tests de vibration, le LTA-10 utilisé pour les tests de comptabilité avec la fusée Saturne, le LTA-1 à usage interne, le LTA-8 pour les tests thermiques et d'exposition au vide et enfin les LTA-3 et LTA-5 sur lesquels sont effectués les tests structuraux combinés de vibrations, accélérations et essais moteurs. Deux simulateurs statiques sont également fabriqués par Grumman.

Modules lunaires utilisés par les missions habitées
Code Nom Mission Apollo Date lancement Localisation actuelle
LM-3 Spider Apollo 9 3/3/1969 S'est désintégré lors de sa rentrée dans l'atmosphère terrestre.
LM-4 Snoopy Apollo 10 18/5/1969 L'étage de descente s'est écrasé sur la Lune; l'étage de remontée est en orbite autour du Soleil.
LM-5
Eagle Apollo 11 16/7/1969 L'étage de descente est posé sur la lune; L'étage de remontée, laissé en orbite autour de la Lune, s'est finalement écrasé sur celle-ci.
LM-6 Intrepid Apollo 12 14/11/1969 L'étage de descente est posé sur la lune; L'étage de remontée s'est écrasé volontairement sur la Lune.
LM-7 Aquarius Apollo 13 11/4/1970 S'est désintégré lors de sa rentrée dans l'atmosphère terrestre.
LM-8 Antares Apollo 14 31/1/1971 L'étage de descente est posé sur la lune; L'étage de remontée s'est écrasé volontairement sur la Lune.
LM-10 Falcon Apollo 15 26/7/1971 L'étage de descente est posé sur la lune; L'étage de remontée s'est écrasé volontairement sur la Lune.
LM-11 Orion Apollo 16 16/4/1972 L'étage de descente est posé sur la lune; l'étage de remontée laissé en orbite autour de la Lune s'est finalement écrasé sur celle-ci.
LM-12 Challenger Apollo 17 7/12/1972 L'étage de descente est posé sur la lune; L'étage de remontée s'est écrasé volontairement sur la Lune.

Dépassements budgétaires

Maquette du module lunaire LTA-2R en cours d'installation sur Apollo 6 pour tester en vol le comportement dynamique de sa structure.
Le LEM d'Apollo 15 sur la Lune avec le rover lunaire

Début 1965 les principales interrogations concernant la conception sont levées. La fabrication de sous-ensembles du LEM et les tests sont lancés. Mais le projet se heurte à des problèmes de dépassement budgétaire, de management et de méthodologie de test.

Cette année-là, le programme Apollo dans son ensemble doit faire face à une décrue budgétaire programmée. Or les coûts des différents modules sont en train d'exploser. La NASA renégocie avec Grumman un contrat comportant des clauses incitant le fabricant à rester dans l'enveloppe budgétaire dédiée au module lunaire qui est désormais, tous intervenants confondus, fixée à 1,42 milliard de dollars.

Un problème de surpoids

En 1965 les concepteurs du module lunaire n'ont encore qu'une idée imprécise du poids final de l'engin mais la limite des 13,3 tonnes imposée par les capacités de la fusée Saturn V est rapidement dépassée. Des mesures ponctuelles comme l'abandon du radar de rendez-vous au profit d'un système optique (mais un veto des astronautes imposera in fine l'installation du radar), n'étaient pas suffisantes. Le module lunaire, malgré un relèvement de la masse autorisée à 14,85 tonnes début 1965, est de nouveau en surpoids. Thomas J. Kelly, chef du projet chez Grumman, conscient que le LEM dans sa version finale, risque de ne pas répondre aux contraintes de masse, lance au cours de l'été 1965 un programme dédié à la chasse aux excédents de poids. L'allègement des structures ne va permettre de n'économiser que 50 kg ; une masse de 1 100 kg est gagnée, en grande partie en remplaçant les boucliers thermiques rigides situés près des moteurs par un millefeuille constitué de couches alternées d'aluminium et de mylar. Mais ces allègements, en fragilisant la structure, rendront la construction et la manipulation du LEM très délicate.

Un planning tendu

Grumman rencontre de nombreux problèmes de fabrication qui affectent le planning de livraison : le suivi des nombreux sous-traitants n'est pas assez serré, les tests réalisés se révèlent insuffisants compte tenu de la complexité du véhicule. La mise au point du moteur de descente rencontre des problèmes graves (érosion du divergent), que le constructeur n'arrive pas à corriger. Fin 1966 les LM 1 et 2 sont en cours de test chez le constructeur tandis que les LM3 à LM7 en sont à différents stades de fabrication.

En 1967 et jusqu'à juin 1968 le moteur de l'étage de remontée conçu par Bell a des problèmes de stabilité qui incite la NASA à faire développer un nouvel injecteur par la société Rocketdyne.

Des problèmes de qualité

L'incendie de la capsule Apollo 1 (27 janvier 1967) provoqué par un court-circuit en atmosphère d'oxygène pur n'entraîne pas de révision de la conception du module lunaire. En revanche les exigences de qualité sont revues à la hausse par la NASA ce qui nécessite la modification de certains composants. Le calendrier du projet Apollo est repoussé de 19 mois ce qui permet au LEM de combler une partie de son retard.

Début 1968 des traces de corrosion sous contrainte sont découvertes dans la structure en alliage d'aluminium des Lem : des renforcements ponctuels et un changement d'alliage pour les Lem restant à construire sont décidés. Toujours en 1968, le câblage électrique s'avère trop fragile et sujet à des ruptures.

La préparation au vol lunaire : les programmes Ranger, Pegasus, Lunar Orbiter, Gemini et Surveyor

Parallèlement au programme Apollo, la NASA lance plusieurs programmes qui doivent valider les choix effectués et permettre de préparer les futures missions lunaires. En 1965, 3 satellites Pegasus sont placés en orbite par une fusée Saturn I pour évaluer le danger représenté par les micrométéorites ; les résultats seront utilisés pour dimensionner la protection des vaisseaux Apollo. Les sondes Ranger (1961-1965) après une longue série d'échecs ramènent à compter de fin 1964 une série de photos de bonne qualité qui permettent de définir les zones d'atterrissage.

Le programme Lunar Orbiter, composé de 5 sondes qui sont placées en orbite autour de la Lune en 1966-1967, complète ce travail : une couverture photographique de 99 % du sol lunaire est réalisée, la fréquence des micrométéorites dans la banlieue lunaire est déterminée ainsi que l'intensité du rayonnement cosmique. Le programme permet également de valider le fonctionnement du réseau de télémétrie : les mesures effectuées permettent de déterminer que le champ de gravitation lunaire n'est pas homogène contrairement à celui de la Terre rendant dangereux les orbites avec des périgées à basse altitude. Le phénomène sous-estimé abaissera à 10 km le périgée du Lem d'Apollo 15 dont l'équipage était endormi, alors que la limite de sécurité avait été fixée à 15 km.

La technique du rendez-vous spatial, à la base de la création du module lunaire, est testée en vol avec succès avec un étage Agena par l'équipage de Gemini 8 le 16 mars 1966. Le 2 juin de la même année, la sonde Surveyor 1 effectue le premier atterrissage en douceur sur la Lune fournissant des informations précieuses et rassurantes sur la consistance du sol lunaire (le sol est relativement ferme).

L'entrainement des pilotes du LEM : les simulateurs de vol

Le LLRV est un simulateur volant qui reproduit le comportement du LEM en gravité lunaire

La phase finale de l'atterrissage sur la Lune est un exercice difficile : pour des raisons de poids, la marge de carburant disponible est très faible (sur l'ensemble des missions Apollo, il restera entre 3 et 6 % de carburant dans les réservoirs du LEM à l'atterrissage soit 2 minutes de vol au maximum) et il faut trouver sur un sol lunaire constellé de cratères et de blocs de pierre, un terrain suffisamment plat pour que le LEM ne bascule pas au moment de l'atterrissage et qu'il puisse par la suite redécoller (ce qui nécessite moins de 20 % de pente). Les vitesses verticale et horizontale à l'atterrissage doivent être limitées pour éviter que le train d'atterrissage ne se brise ou que le Lem bascule, ce qui aurait condamné les pilotes. On demande également au pilote d'effectuer un atterrissage précis : chaque mission a pour objectif de poser le LEM dans une zone sélectionnée à l'avance pour son intérêt géologique. Certaines des missions seront confrontées à deux autres problèmes : une luminosité gênant la reconnaissance des reliefs et, en phase finale (à compter de 30 mètres d'altitude pour Apollo 15), la poussière soulevée par le jet du moteur-fusée qui empêche de distinguer les reliefs et de connaître la vitesse horizontale résiduelle à ce moment critique. Poser un tel engin du premier coup sans faire d'erreurs et en ne l'ayant jamais réellement piloté nécessitait un entraînement intensif sur Terre.

Aussi, trois types de simulateurs de vol sont mis à la disposition des astronautes pour qu'ils puissent s'entraîner à manœuvrer le module lunaire dans des conditions s'approchant au maximum de celles rencontrées sur la Lune :

  • Un simulateur fixe qui permet aux astronautes de maîtriser les procédures normales et d'urgence ainsi que de s'entraîner à repérer et atterrir sur le site choisi pour la mission : à cet effet, le pilote dispose d'une vue filmée par une caméra qui survole une maquette en 3 dimensions de la région du site.
  • Une maquette de module lunaire suspendue à un portique au-dessus d'un terrain configuré comme la surface de la Lune.
  • Un engin volant complètement libre, le LLRV, dont le comportement reproduit celui du module lunaire, grâce à la poussée d'un réacteur monté sur cardan et piloté par un ordinateur à l'aide de commandes de vol électriques qui annule en permanence 5/6 de la gravité terrestre. Trois des cinq exemplaires du LLRV, seront détruits en vol au cours des vols de formation et de test, sans faire de victimes (Neil Armstrong échappera à la mort à une seconde près, lors d'un vol d'entrainement au cours duquel il dut s'éjecter, peu de temps avant son envol historique vers la lune).
Page générée en 0.222 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise