Modèle standard (physique des particules) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Les forces fondamentales de l'univers

Elles sont au nombre de quatre :

  1. la force de gravitation : elle s'exerce sur toutes les particules proportionnellement à leur masse ;
  2. la force électromagnétique : elle s'exerce sur les particules de matière électriquement chargées ;
  3. la force nucléaire faible : elle concerne seulement certains quarks et leptons et est responsable des radioactivités β- et β+.
  4. la force forte, qui s'exerce entre les quarks, et dont dérive la force nucléaire, qui assure la cohésion du noyau atomique ;

Ces quatre forces sont décrites respectivement par quatre théories :

  1. la relativité générale,
  2. l'électrodynamique quantique,
  3. la théorie électrofaible (en fait, elle associe force faible et force électromagnétique et englobe donc l'électrodynamique quantique),
  4. la chromodynamique quantique,

les trois dernières étant regroupées dans le « modèle standard ».

Les particules ou quanta de matière

Les particules élémentaires de matière sont des fermions. Les fermions obéissent à la statistique de Fermi-Dirac ; ils sont donc de spin demi-entier ( 2k + 1 ) / 2 et sont soumis au principe d'exclusion de Pauli.

Les particules élémentaires de matière se répartissent en leptons et en quarks, suivant trois générations qui ne diffèrent l'une de l'autre que par la masse, plus élevée à chaque génération. Seules les particules de première génération forment la matière ordinaire. En effet, les protons sont formés de deux quarks up et d'un down, tandis que les neutrons sont formés d'un quark up et de deux down. Les particules de deuxième et troisième générations sont instables et se désintègrent rapidement en particules de première génération, plus légères.

Voici un tableau regroupant par génération les différents leptons et quarks. Pour ne pas surcharger ce tableau, les antiparticules n'y sont pas représentées.

Première génération

Particule
Notation
Charge électrique
Charge forte (*)
Masse
Spin
Électron e -1 \bold{1} 511 keV/c2 1/2
Neutrino électronique νe 0 \bold{1} < 2 eV/c2 1/2
Quark Up u 2/3 rouge, vert, bleu ~ 3 MeV/c2 1/2
Quark Down d -1/3 rouge, vert, bleu ~ 6 MeV/c2 1/2

Deuxième génération

Particule
Notation
Charge électrique
Charge forte (*)
Masse
Spin
Muon μ -1 \bold{1} 106 MeV/c2 1/2
Neutrino mu νμ 0 \bold{1} < 2 eV/c2 1/2
Quark Charm c 2/3 rouge, vert, bleu ~ 1.3 GeV/c2 1/2
Quark Strange s -1/3 rouge, vert, bleu ~ 100 MeV/c2 1/2

Troisième génération

Particule
Notation
Charge électrique
Charge forte (*)
Masse
Spin
Tau τ -1 \bold{1} 1,78 GeV/c2 1/2
Neutrino tau ντ 0 \bold{1} < 2 eV/c2 1/2
Quark Top t 2/3 rouge, vert, bleu 171 GeV/c2 1/2
Quark Bottom b -1/3 rouge, vert, bleu ~ 4.2 GeV/c2 1/2

(*): A la différence du cas de l'électrodynamique quantique les charges faibles et fortes ne sont pas des nombres à proprement parler mais des représentations des groupes SU(2) et SU(3) qui décrivent mathématiquement respectivement l'interaction faible et l'interaction forte. Ainsi par exemple \bold{1} désigne la représentation triviale ce qui signifie que la particule n'est pas chargée sous le groupe correspondant.

Les quarks ne peuvent exister isolément. Tous les hadrons dont la découverte a été confirmée (PDG2009) se présentent sous forme de paires quark-antiquark (les mésons), ou de trios de quarks (les baryons).

Page générée en 0.123 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise