Microscopie électronique à balayage - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Marché

Le marché des microscopes (tous types confondus) est estimé à 811 millions de dollars US, dont environ 60 % sont générés par les microscopes optiques. Avec 26 %, les microscopes électroniques représentent la deuxième part de ce marché, estimée en 1999 par Global Information Inc. à environ 222 millions de dollars. Global Information Inc. estime également que la part des microscopes optiques ira en diminuant, celle des microscopes confocales restera stable tandis que le marché des microscopes électroniques se développera et était estimé à 747 millions de dollars en 2005.

Le prix moyen d’un MEB est estimé à 200 000 $ mais peut monter jusqu’à un million de dollars pour les appareils les plus avancés. Cependant, de nouveaux microscopes, qualifiés de microscope à bas prix (low-cost miscroscopes) ont été récemment proposés sur le marché, pour un tiers du prix moyen d’un MEB.

Applications

Microélectronique, technologie des semiconducteurs et microfabrication

Images de MEB à faible énergie (1 kV) : Cette photo de 1995 montre une ligne de photorésine de 120 nm de large et 1 µm de haut. On voit, sur les flancs de la photorésine, l'effet des ondes stationnaires du rayonnement UV utilisé pour l’exposition de la résine. Le MEB est un DSM 982 de chez Zeiss, équipé d’une colonne Gemini

La mise sur le marché microsopes électroniques à balayage est à peu près contemporain de l’envol de l’industrie des semi-conducteurs. C’est dans ce domaine d’activité que le MEB s’est répandu le plus massivement, étant reconnu comme un outil précieux dans la mise au point des procédés de fabrication des dispositifs dont l’élément caractéristique, la grille de transistor est passée d’une largeur typique de quelques micromètres à la fin des années 1960 à moins de 100 nanomètres au XXIe siècle. Non seulement le MEB a permis de voir au-delà des limites du microscope optique, mais la vision en relief s’est avérée très pratique pour l’aide à la microfabrication où il est souvent important de contrôler la verticalité des couches déposées ou des couches gravées. Voir, par exemple, sur la figure ci-contre, une image de MEB d’un motif de photorésine gravée.

Très populaire dans les laboratoires de recherche et développement, le MEB est également devenu un outil très répandu dans les unités de production fabrication, en tant qu’outil de contrôle industriel. La chambre d’analyse doit alors pouvoir accepter des tranches de silicium ((en) wafer) entières, c’est-à-dire dont le diamètre est, en 2006, de 200 mm ou 300 mm. On a même donné un nom particulier aux appareils qui effectue du contrôle dimensionnel, c’est-à-dire, qui vérifient la largeur d’une ligne. En anglais, on les appelle des CD-SEM. Ces appareils sont entièrement automatisés : ils ne produisent pas d’images à proprement parler : le calculateur de contrôle amène un motif de test exactement sur l’axe du faisceau qui est alors balayé dans une seule direction. Le signal du détecteur d’électrons secondaires est enregistré et analysé pour générérer la largeur mesurée. Si celle-ci est en dehors du gabarit donné, l’alerte est donnée, et la tranche de silicium, considérée comme mauvaise peut rejetée.

Une autre application des MEB dans les unités de production de semiconducteurs est la caractérisation de microparticules qui contaminent la surface des tranches : le but final est d’identifier la cause de la contamination afin de la supprimer. La particule dont la taille peut varier de 100 nm à 1 µm a été détectée par une machine d’inspection spécialisée qui communique les coordonnées de la particules au MEB d’analyse. Celui-ci est alors utilisé à la fois dans le mode imagerie, pour produire une image de la particule à fort grosissement et en microsonde de Castaing, ce qui implique que le MEB soit équipé d’un spectromètre X. L’image peut aider à l’identification de la particule, mais c’est surtout la caractérisation chimique résultant de l’analyse en longueur d’onde des rayons X qui donnera une piste permettant de remonter à la cause de la contamination.

La sonde électronique d’un MEB peut être utilisée non pas pour observer, mais pour écrire et fabriquer. Il s’agit alors de lithographie à faisceau d’électrons.

Science des matériaux

Les MEB utilisés en métallographie sont généralement équipés d’un spectromètre X qui permet leur utilisation en microsonde de Castaing. Ce sont des outils très communément répandus pour la caractérisation microstructurale des matériaux qui permettent d’obtenir à la fois des renseignements relatifs à la morphologie et à la répartition des constituants, et des informations cristallographiques et compositionnelles.

Pour obtenir certaines figures de diffraction (peudo-Kikuchi, Kossel), on est amené à pervertir le système de balayage de l’instrument : au lieu de générer un balayage en mode rectangulaire, on excite des bobines de déflexion de façon à faire pivoter le faisceau de plusieurs degrés autour d’un point fixe de l’échantillon. L’image générée est alors une figure de diffraction correspondant à une zone de l’échantillon de quelques micromètres.

Biologie

Au contraire des microscopes électroniques en transmission, le MEB se prête peu à l’étude des cellules. Par contre, la vision en relief du MEB se prête bien à l’observation des micro-organismes, pas forcément pour le pouvoir de résolution spatial, mais pour la profondeur de champ nettement plus élevée que celle des microscopes optiques.

Divers

Le microscope électronique à balayage est l’un des appareils fondamentaux pour les recherches tribologiques ; voir à ce sujet le wikilivre de tribologie et plus spécialement le chapitre consacré à la genèse des frottements.

Page générée en 0.106 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise