Microfluidique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La microfluidique est la science et la technologie des systèmes manipulant des fluides et dont au moins l'une des dimensions caractéristiques est de l'ordre du micromètre.

Définition

Exemple de réseau microfluidique : structure veineuse d'une feuille d'érable. Le reste de la feuille a été dissout par gravure pour ne conserver que les veines.

G.M. Whitesides définit la microfluidique comme « la science et la technologie des systèmes qui manipulent de petits volumes de fluides (10-9 à 10-18 litres), en utilisant des canaux de la dimension de quelques dizaines de micromètres ». Selon P. Tabeling, « on peut définir la microfluidique comme [une discipline] portant sur les écoulements de fluides simples ou complexes, mono ou multiphasiques, dans des microsystèmes artificiels, c'est-à-dire fabriqués à l'aide des nouvelles techniques ». Tabeling précise qu'il entend essentiellement par « nouvelles techniques » les techniques de microfabrication héritées de la micro-électronique. La première définition fait bien apparaître la dualité de la microfluidique : en tant que science, elle englobe l'étude des phénomènes et la mécanique des fluides à l'échelle micrométrique ; en tant que technique, elle contient également une dimension applicative. Cependant, la définition de Whitesides fait porter le préfixe micro sur la dimension de canaux. Ce préfixe ne concerne pas les volumes de fluides qui, dans la définition de Whitesides, sont compris entre le nanolitre et l'attolitre. Or, certains systèmes microfluidiques, par exemple les dispositifs d'électromouillage sur diélectrique, fonctionnent en gouttes, sans canaux. Tabeling donne quant à lui une définition d'ingénieur qui, comme il le souligne lui-même, exclut l'ensemble des systèmes microfluidiques naturels, tels que les capillaires sanguins ou le transport de sève dans les plantes. On peut définir plus largement la microfluidique comme la science et la technologie des systèmes manipulant des fluides et dont au moins l'une des dimensions caractéristiques est de l'ordre du micromètre.

Écoulements des fluides à l'échelle micro- et nanométrique

La nature de l'écoulement dépend du nombre de Reynolds, et donc de la taille caractéristique d : (a) écoulement laminaire, (b) écoulement turbulent

Aux petites dimensions, les phénomènes physiques macroscopiques ne subissent pas seulement un diminution linéaire de leurs effets. Certains phénomènes négligeables deviennent prépondérants, comme la capillarité ; inversement, d'autres forces telles que la gravité deviennent négligeables. Afin d'appréhender plus facilement les caractéristiques d'un système microfluidique, plusieurs grandeurs sans dimension ont été introduites. La plus répandue est probablement le nombre de Reynolds Re, proposé en 1883, qui caractérise le rapport entre les forces d'inertie et les forces de viscosité. Les systèmes microfluidiques sont généralement caractérisés par un petit nombre de Reynolds : les forces de viscosité sont prépondérantes. Ce comportement se traduit par des flux laminaires. On peut également citer le nombre de Péclet Pe, liant convection et diffusion, et le nombre de Knudsen Kn, permettant de classifier les milieux continus. Squires et Quake décrivent en détail la physique et les nombres adimensionnels à l'échelle du nanolitre.

\mbox{Re} = \frac{\rho\,d\,V}{\eta} = \frac{d\,V}{\nu}

Avec :

  • ρ la masse volumique du fluide (kg.m-3) ;
  • d la taille caractéristique du système (m) ;
  • V une vitesse caractéristique (m.s-1) ;
  • η la viscosité dynamique du fluide (kg.m-1.s-1, Pa.s, ou Pl) ;
  • ν la viscosité cinématique du fluide (m².s-1).

Lorsque la longueur caractéristique d décroît et la viscosité ν augmente, le nombre de Reynolds diminue fortement. La fluidique à bas nombre de Reynolds possède certaines caractéristiques remarquables. Un petit nombre de Reynolds entraîne souvent un écoulement laminaire : il est stable, et les lignes de courant sont bien dessinées. Au voisinage de la surface, les forces de contact entre le liquide et le solide (la surface de la canalisation) prédominent. La viscosité du fluide introduit une condition de non glissement qui annule la vitesse du fluide : il adhère à la paroi.

Page générée en 0.092 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise