La mémoire holographique est une nouvelle technique de mémoire de masse utilisant l'holographie pour stocker de hautes densités de données dans des cristaux ou des polymères photosensibles.
La mémoire holographique est souvent désignée comme étant la prochaine génération de stockage optique des données. En effet, les techniques utilisées pour les CD ou les DVD atteignent leurs limites physiques (à cause de la taille de diffraction limitée des rayons d'écriture). L'holographie permet d'utiliser le volume du support au lieu de se limiter à la surface pour enregistrer des données. De plus, les données peuvent être multiplexées dans le volume d'enregistrement en ajoutant un angle au faisceau enregistreur par rapport au faisceau de référence, ou encore en modifiant sa fréquence ou sa phase.
Les principes de l’holographie sont connus depuis 1947 et l’idée de stocker des données dans des hologrammes a germé dès les années qui suivirent cette découverte. Les premiers dispositifs de stockage pour systèmes d’information qui expérimentent ce principe sont par contre récents. Depuis le milieu des années 1990, notamment sous l’impulsion de la DARPA (Defense Advanced Research Project Agency), de grands laboratoires comme ceux d’IBM et de Lucent Technologies et plus récemment imation ont intensifié les recherches dans ce domaine.
En juin 2006, la société InPhase Technologies (Longmont, CO), annonce la réalisation du premier média de stockage holographique. D'une capacité de 300Go, il mesure 152x135x109mm et atteint un débit de 20Mo/s.
Un faisceau laser est séparé à l'aide d'un cube séparateur (Beam Splitter) en deux faisceaux respectivement appelés « faisceau de référence » et "faisceau objet". Le faisceau référence dans l'axe d'un réflecteur comme présenté sur la figure.
Pour l'enregistrement, le faisceau est agrandi par les lentilles (L), afin d'illuminer complètement un modulateur spatial de lumière (SLM) (en réalité un panneau LCD, ressemblant à une sorte de grille, où les cases « opaques » et « transparentes » représentent respectivement les « 0 » et les « 1 » de l'information à stocker). Le but est de transférer les données au faisceau objet sous forme d'une page de pixels; ce faisceau objet est ensuite focalisé sur le cristal photosensible ou il interfère avec le faisceau de référence qui, lui, a subi une réflexion sur un déflecteur (à position angulaire programmable). De cette interaction naît un motif d'interférences qui modifie les propriétés physico-chimiques du cristal. Le fait de changer l'angle d'attaque du rayon, sa longueur d'onde ou la position sur le support vont permettre de stocker une grande quantité d'informations dans un faible volume.
À la lecture, l'éclairement par le faisceau de référence (suivant les angles d'enregistrement) conduit à une diffraction de la lumière qui reconstruit le faisceau objet avec sa page de données (avec une commutation des pages par orientation des angles); il ne reste plus qu'à diriger le faisceau sur la caméra CCD, qui capture instantanément la page digitale, la décode et transmet l'information à un ordinateur.
Comme pour les CD ou les DVD, les mémoires holographiques peuvent être en lecture seule (si le média subit une altération irréversible) ou réinscriptible (si l'altération est réversible). Les mémoires réinscriptibles peuvent être conçues en utilisant l'effet photoréfractif des cristaux:
Pour lire les données enregistrées, on utilise le faisceau de référence. On éclaire le média avec ce faisceau et la variation de l'indice de réfraction le sépare en deux et recrée le faisceau incident qui avait servi à écrire les données. Ce faisceau est lu par un système optique pour être converti en signaux numériques.