Matrice (mathématiques) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Normes et rayon spectral

Dans tout ce paragraphe, les matrices considérées sont dans \mathcal M_n(\R) ou \mathcal M_n(\mathbb C) . De plus on identifie une matrice A avec l'endomorphisme de \mathcal M_{n,1}(\R) ou \mathcal M_{n,1}(\mathbb C) qui à la matrice colonne X associe la matrice colonne AX. Le cas réel et le cas complexe sont identiques.

Normes et normes d'algèbre

Soit N une norme sur \mathcal M_n(\R) ou \mathcal M_n(\mathbb C) .

On dira que N est une norme d'algèbre (on dit aussi norme de Banach ou norme multiplicative) si et seulement si

 \forall (A,B),\  N(AB)\le N(A)N(B)

Certains auteurs imposent en outre que N(In) = 1

Pour une norme quelconque, l'application bilinéaire  (A,B) \mapsto AB étant continue (on est en dimension finie), on est assuré de l'existence d'une constante k > 0 telle que

 \forall (A,B),\  N(AB)\le kN(A)N(B)

Par suite, la norme \frac1k N est une norme d'algèbre. Toute norme est donc proportionnelle à une norme d'algèbre.

Rayon spectral

Soit A une matrice carrée à coefficients complexes. On appelle rayon spectral le plus grand module des valeurs propres de A. Dans tout ce qui suit, on notera ρ(A) le rayon spectral de A.

Théorème : Pour toute norme d'algèbre N sur \mathcal M_n(\R) (respectivement dans \mathcal M_n(\mathbb C) ) et pour toute matrice A dans \mathcal M_n(\R) (respectivement dans \mathcal M_n(\mathbb C) ), l'inégalité suivante est vérifiée :

 \rho(A)\le N(A)

Démonstration : Soit λ une valeur propre de A et X un vecteur propre associé. notons B la matrice carrée dont la première colonne est X et les autres sont nulles. On a AB = λB donc  N(AB) = |\lambda| N(B)\le N(A)N(B) et on peut simplifier par N(B) car le vecteur X étant non nul, il en est de même de la matrice B.

De plus, on montre que  \rho(A) = \inf N(A) , la borne inférieure étant prise sur l'ensemble des normes subordonnées, donc a fortiori sur l'ensemble des normes d'algèbre.

Par contre, l'égalité peut s'avérer impossible. Il suffit pour cela de considérer une matrice non nulle dont le rayon spectral est nul :  \begin{pmatrix} 0 & 0\\ 1 & 0 \end{pmatrix}

Normes subordonnées

Lorsqu'on munit \mathcal M_{n,1}(\R) d'une norme \|.\| , on munit automatiquement \mathcal M_n(\R) d'une norme, appelée norme subordonnée à \|.\| . Elle est donnée par la formule suivante donnée pour une matrice A quelconque dans \mathcal M_{n,1}(\R)  :  |||A ||| = \sup _{\|X\|\le 1} \|AX\|

En notant  A=(a_{i,j})_{1\le i\le n,\ 1\le j\le n} , on a

  • Si  \|X\| = \max_{1\leq i \leq n} |x_i| , (norme infinie), alors la norme de A vaut :
\max_{1\leq i \leq n} \sum _{1\leq j \leq n} |a_{i,j}|
  • Si  \|X\| = \sum _{1\leq i \leq n} |x_i| , (norme indice 1), alors la norme de A vaut :
\max_{1\leq j \leq n} \sum _{1\leq i \leq n} |a_{i,j}|

Toute norme subordonnée est une norme d'algèbre avec en plus | | | In | | | = 1.

La réciproque, même avec cette clause supplémentaire | | | In | | | = 1, est fausse. En effet, si N est subordonnée à \|.\| , avec \|X_0\|=1 , il est nécessaire que, pour tout X, on ait  \|X\| = \inf_{AX_0=X} N(A) . C'est une conséquence immédiate du théorème de Hahn-Banach.

À présent, si, pour M=\begin{pmatrix}a&b\\c&d\end{pmatrix} , on pose N(M) = Max( | a | + | c | ,2 | b | + | d | ), et X_0=\begin{pmatrix}1\\0\end{pmatrix} , on vérifie toutes les propriétés attendues de N, mais le procédé précédent donne comme norme  \|X\| = \inf_{AX_0=X} N(A) la norme \|\|_\infty classique, à laquelle N n'est pas subordonnée.

Norme subordonnée à la norme euclidienne

On se place dans la cas où \mathcal M_{n,1}(\R) est muni de sa norme euclidienne canonique donnée par  \|X\|^2 = \sum _{1\leq i \leq n} |x_i|^2 .

Lorsque A est une matrice symétrique (respectivement hermitienne), la norme de A est égale au rayon spectral de A.

Dans le cas où A est une matrice quelconque, la norme de A est égal à  \sqrt {\rho(^tAA)}.

La norme de A est donc la plus grande des valeurs singulière de A (les valeurs singulière de A sont, par définition, les racines carrées des valeurs propres de tAA).

Exponentielle d'une matrice

Soit  A\in\mathcal M_n(\mathbb C) , Soit N une norme d'algèbre et \sum a_n z^n une série entière de rayon de convergence R.

Alors si N(A) < R, la série \sum a_n A^n est absolument convergente. La ruse, c'est que N(A^n)\le N(A)^n .

En particulier, on peut définir, pour toute matrice carrée complexe, la quantité

 \exp (A) = \sum_{k=0}^{+\infty} \frac1{k!} A^k

Le calcul effectif de cette exponentielle se fait par réduction de la matrice.

L'exponentielle joue un rôle central dans l'étude des systèmes linéaires d'équations différentielles.

Page générée en 0.123 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise