Mathématiques de la relativité générale - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Champs de tenseurs en relativité générale

Les champs de tenseurs sur une variété sont des applications {\mathbf T} : p \mapsto {\mathbf T}(p) qui associent un tenseur à chaque point p de la variété. Cette notion peut être rendue plus précise en introduisant l'idée d'espace fibré, qui dans le contexte présent est destiné à rassembler tous les tenseurs de tous les points de la variété, en formant ainsi un objet appelé fibré tensoriel. Un champ de tenseurs est alors défini comme une application reliant la variété au fibré tensoriel, associant à chaque point p un tenseur en p.

La notion de champ de tenseurs est d'une importance majeure en Relativité Générale. Par exemple, la géométrie autour d'une étoile est décrite par un tenseur métrique en chaque point, nécessitant que la valeur de la métrique soit donnée en chaque point de l'espace-temps pour déterminer la trajectoire des particules. Autre exemple : les valeurs des champs magnétique et électrique (donnés par le tenseur du champ électromagnétique) et la métrique en chaque point autour d'un trou noir chargé déterminent le mouvement d'une particule chargée soumise à ce champ.

Les champs vectoriels sont des champs tensoriels contravariant de rang 1. La quadri-vitesse, U^a = \tfrac{\mathrm dx^a}{\mathrm d \tau} , qui est la distance parcourue dans l'espace-temps par unité de temps propre, la quadri-accélération A^a = \tfrac{\mathrm d^2x^a} {\mathrm d \tau^2} et le 4-courant Ja, décrivant les densités de charge et de courant, sont des exemples de champs vectoriels importants en relativité. D'autres champs de tenseurs utilisés en relativité sont :

  • Le tenseur énergie-impulsion Tab, tenseur symétrique de rang 2.
  • Le tenseur de champ électromagnétique Fab, tenseur antisymétrique de rang 2.

Bien que le mot « tenseur » se réfère à un objet en un point, il est courant de parler de champs de tenseurs de l'espace-temps (ou d'une de ses régions) sous la dénomination de « tenseurs ».

En chaque point de l'espace-temps où une métrique est définie, cette dernière peut être réduite à la forme de Minkowski (par le théorème de Sylvester).

Le tenseur énergie-impulsion

Les sources du champ gravitationnel (matière et énergie) sont représentées en relativité par un tenseur à deux indices symétrique appelé tenseur énergie-impulsion (les indices pouvant être en haut, en bas ou encore mixtes). Il est intimement relié au tenseur de Ricci. En tant que tenseur à deux indices en 4 dimensions le tenseur peut être considéré comme étant une matrice 4×4. Cependant les différents types de matrices admissibles, appelés formes de Jordan, ne peuvent pas tous être réalisés car des conditions d'énergie imposées sur le tenseur énergie-impulsion en contraignent la forme

Conservation de l'énergie

En relativité générale on peut exprimer une forme locale de la conservation de l'énergie-impulsion. Elle est exprimée sous forme condensée par l'équations suivante

Tab;b = 0

L'équation analogue dans le cadre de la relativité restreinte s'écrit quant à elle

Tab,b = 0

Ce qui illustre la règle selon laquelle en relativité générale les dérivées partielles correspondent à des dérivées covariantes.

Le tenseur de courbure de Riemann

Un élément fondamental de la relativité générale est le concept de variété courbe. Une manière utile d'exprimer la courbure d'une variété est d'utiliser un objet appelé tenseur (de courbure) de Riemann.

Ce tenseur mesure la courbure en utilisant une connexion affine considérant les effets d'un transport parallèle d'un vecteur reliant deux points le long de deux courbes. La différence entre les résultats de ces deux transports parallèles est quantifiée par le tenseur de Riemann.

Cette propriété du tenseur de Riemann peut être utilisée pour décrire comment des géodésiques initialement parallèles divergent. Ceci est exprimé par l'équation de la déviation des géodésiques et exprime le fait que les forces de marée générées par un champ gravitationnel sont le résultat de la courbure de l'espace-temps.

Le tenseur de Riemann est alors défini comme un tenseur de type (1,3). Exprimé explicitement, il contient les symboles de Christoffel et ses dérivées partielles d'ordre 1. Il contient 20 composantes indépendantes. L'annulation de toutes ces composantes dans une région indique que l'espace-temps y est plat. Du point de vue de la déviation des géodésiques, ceci signifie que des géodésiques initialement parallèles dans cette région le resteront.

Le tenseur de Riemann possède un certain nombre de propriété désignées sous le « terme de symétrie du tenseur de Riemann ». On utilise particulièrement dans le cadre de la relativité générale les identités algébriques et différentielles de Bianchi.

La connexion et la courbure d'une variété riemannienne sont fortement liées. La théorie des groupes d'holonomie, qui sont formés en utilisant des graphes linéaires définis par le transport parallèle le long de courbes de la variété, fournit une description de cette relation.

Page générée en 0.123 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise