Mathématiques dans l'Égypte antique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Numération égyptienne

Les Égyptiens de l'Antiquité utilisaient un système de numération décimal, mais dans lequel le zéro n'existait pas. Chaque ordre de grandeur (unités, dizaines, centaines, etc.) possédait un signe répété le nombre de fois nécessaire. C'était donc un système additionnel.

Connaissances arithmétiques

Les Égyptiens connaissaient les quatre opérations, pratiquaient le calcul fractionnaire, étaient capables de résoudre des équations du premier degré par la méthode de la fausse position et de résoudre certaines équations du second degré. Le papyrus Rhind explique comment calculer l'aire d'un cercle en utilisant une approximation fractionnaire de pi : 4x(8/9)x(8/9)=3,16. Le papyrus de Moscou, quant à lui, explique entre autres comment calculer le volume d'une pyramide tronquée et la surface d'une demi-sphère, montrant que les anciens Égyptiens avaient de bonnes connaissances en géométrie.

Addition et soustraction

Bien qu'aucune explication ne soit fournie par les papyrus mathématiques, le système additionnel de la numération égyptienne rend toutes naturelles les opérations d'addition et de soustraction.

L'addition de deux nombres consistait à compter le nombre de symboles total correspondant à une même grandeur. Si le nombre de cette grandeur dépassait dix, le scribe remplaçait ces dix symboles par le symbole de la grandeur supérieure.

Exemple
2343 + 1671




+



nous donne




Soit :



Finalement, le résultat est :



Multiplication

La technique de multiplication en Égypte antique reposait sur la décomposition d'un des nombres (généralement le plus petit) en une somme et la création d'une table de puissance pour l'autre nombre. Très souvent, cette décomposition s'effectuait suivant les puissances de deux. Mais celle-ci pouvait varier en fonction de la complexité de l'opération. Le plus petit nombre pouvait ainsi être décomposé alternativement suivant les puissances de deux, les dizaines et les fractions fondamentales telles que 2/3, 1/3, 1/10 etc.

Division

La technique de division en Égypte antique reposait sur le même principe que la multiplication, en ce sens où des tables constituées de puissances de deux successives, de fractions fondamentales et de dizaines étaient utilisées pour résoudre le problème.

Carré et racine carrée

Le carré d'une valeur appliqué au calcul d'une surface peut sans aucun problème être assimilé à une simple multiplication. Par contre, les racines carrées, dont il est assuré qu'elles furent connues des anciens Égyptiens, n'ont laissé aucun document nous permettant de comprendre la technique d'extraction opérée par eux.

L'énoncé du problème mathématique du papyrus 6619 de Berlin (voir § Équations du second degré) contient la racine carrée de 1 + 1/2 + 1/16, soit 1 + 1/4 ; ainsi que la racine carrée de 100, c'est-à-dire 10. À en juger par les exemples connus d'extraction d'une racine carrée, il semble que le scribe ne connaissait que les radicaux simples, résultant en entiers ou en peu de fractions. Toutefois, l'absence d'opérations dans les problèmes traités indique que le scribe devait avoir à sa disposition des tables contenant le résultat des racines carrées usuelles. Le papyrus Kahun et le papyrus de Moscou contiennent des applications aux racines carrées, mais il est notable que le plus important papyrus mathématique, le papyrus Rhind, n'en contient aucune.

Page générée en 0.109 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise