Loi hypergéométrique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Espérance, variance et écart type

L'espérance d'une variable aléatoire suivant une loi hypergéométrique est la même que dans le cas binômiale. X\, suit une loi hypergéométrique de paramètres n, p, A\, , alors son espérance est \mathbb{E}(X)=np\, .

La variance d'une variable aléatoire suivant une loi hypergéométrique de paramètres n, p, A est npq\frac{A - n}{A - 1}

L'écart type est alors \sqrt{npq}\sqrt{\frac{A - n}{A - 1}} .

Page générée en 0.082 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise