Loi forte des grands nombres - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Démonstration de la loi forte de Kolmogorov

1ère étape de la démonstration : troncature

On suppose tout d'abord que les variables \ \scriptstyle X_{n}\ sont centrées. On n'abandonnera cette hypothèse qu'à la toute dernière étape de la démonstration. On pose

 X^{\prime}_{n} = X_{n}\,1_{\left|X_{n}\right|\le n},

et

 S^{\prime}_{n} = X^{\prime}_{1}+X^{\prime}_{2}+\cdots+X^{\prime}_{n}.

Dans cette section on démontre que

Proposition 1. —  Soit une suite \ \scriptstyle \left(X_{n}\right)_{n\ge 1}\ de variables aléatoires indépendantes et de même loi, intégrables. Alors (la loi forte des grands nombres)

 \ \scriptstyle \mathbb{P}\left(\omega\in\Omega\ \left|\ \lim_{n}\tfrac{S_{n}(\omega)}n=0\right.\right) = 1.
est équivalente à
 \ \scriptstyle \mathbb{P}\left(\omega\in\Omega\ \left|\ \lim_{n}\tfrac{S^{\prime}_{n}(\omega)}n=0\right.\right) = 1.

Dans les sections suivantes on va donc démontrer que

 \mathbb{P}\left(\omega\in\Omega\ \left|\ \lim_{n}\tfrac{S^{\prime}_{n}(\omega)}n=0\right.\right) = 1.

L'idée est que plus les variables concernées sont intégrables, i.e. plus la queue de distribution \scriptstyle\  \mathbb{P}\left(\left|X_1-\mathbb{E}(X_1)\right|\ge x\right) décroît rapidement, plus il est facile de démontrer la loi forte des grands nombres à l'aide du lemme de Borel-Cantelli. Ainsi il est facile de démontrer une forme affaiblie de la loi forte des grands nombres, par exemple sous l'hypothèse que les variables \scriptstyle\  X_n sont i.i.d. bornées, auquel cas \scriptstyle\  \mathbb{P}\left(\left|X_1-\mathbb{E}(X_1)\right|\ge x\right) est nulle pour \scriptstyle\  x assez grand, ou bien sous l'hypothèse, moins brutale, que les variables \scriptstyle\  X_n sont i.i.d. et possèdent un moment d'ordre 4, auquel cas \scriptstyle\  \mathbb{P}\left(\left|X_1-\mathbb{E}(X_1)\right|\ge x\right)=\mathcal{O}\left(x^{-4}\right) . Ici, en tronquant les \scriptstyle\  X_n , Kolmogorov s'est ramené à des variables \scriptstyle\  X^{\prime}_n bornées et indépendantes, mais qui n'ont pas même loi.

2ème étape de la démonstration : recentrage

Les \ \scriptstyle X_{k}\ ont beau être centrées, cela n'entraîne pas que les \ \scriptstyle X^{\prime}_{k}\ soient centrées, sauf si on suppose, par exemple, que les \ \scriptstyle X_{k}\ sont symétriques, i.e. sauf si \ \scriptstyle X_{k}\ a même loi que \ \scriptstyle -X_{k}\ . Par exemple, si \ \scriptstyle f_{X_{1}}(x)=e^{-x-1}1_{[-1,+\infty[}(x)\ , alors, dès que \ \scriptstyle n\ge 1,\ \ \scriptstyle X^{\prime}_{k}\ n'est pas centrée. Il est commode, pour la suite, de centrer les \ \scriptstyle X^{\prime}_{k}\  : on pose

Z_{k}= X^{\prime}_{k}-\mathbb{E}\left[X^{\prime}_{k}\right],

et

C_{n}=Z_{1}+Z_{2}+\cdots+Z_{n}.

Alors

Proposition 2. —  Soit une suite \ \scriptstyle \left(X_{n}\right)_{n\ge 1}\ de variables aléatoires indépendantes et de même loi, intégrables. Alors

 \ \scriptstyle \mathbb{P}\left(\omega\in\Omega\ \left|\ \lim_{n}\tfrac{S^{\prime}_{n}(\omega)}n=0\right.\right) = 1
est équivalent à
 \ \scriptstyle \mathbb{P}\left(\omega\in\Omega\ \left|\ \lim_{n}\tfrac{C_{n}(\omega)}n=0\right.\right) = 1.

3ème étape : Inégalité de Kolmogorov

C'est l'étape où Kolmogorov utilise l'hypothèse d'indépendance (et, sans le dire, la notion de temps d'arrêt). Par contre, l'Inégalité de Kolmogorov ne requiert pas des variables de même loi.

Inégalité de Kolmogorov. — Soit une suite \ \scriptstyle \left(Y_{n}\right)_{n\ge 1}\ de v.a.r. indépendantes et centrées. Posons

W_{n}=Y_{1}+Y_{2}+\cdots+Y_{n}.

Alors, pour tout \ \scriptstyle x>0\ ,

\mathbb{P}\left(\sup\left\{\left|W_{n}\right|\,|\,n\ge 1\right\}>x\right)\le \frac{\sum_{n\ge 1}\text{Var}\left(Y_{n}\right)}{x^2}.

Voir aussi l'article en anglais sur le même sujet.

4ème étape : Convergence de séries de variables aléatoires

L'inégalité de Kolmogorov est, avec le lemme de Borel-Cantelli, l'ingrédient essentiel de la preuve de la proposition suivante :

Proposition 3. —  Soit une suite \ \ \scriptstyle \left(U_{n}\right)_{n\ge 1}\ de v.a.r. indépendantes et centrées. Si

\sum_{n\ge 1}\text{Var}\left(U_{n}\right)<+\infty,

alors la suite \ \scriptstyle T_{n}=U_{1}+U_{2}+\cdots+U_{n}\ est convergente, ou bien, équivalemment, la série \ \scriptstyle \sum_{n\ge 1}\ U_{n}\ est convergente.

5ème étape : Lemme de Kronecker

Lemme de Kronecker. — Soit une suite \ \scriptstyle \left(a_{n}\right)_{n\ge 1}\ de nombres strictement positifs, décroissante vers 0. Si \ \scriptstyle \sum_{n}a_{n}u_{n}\ est une série convergente, alors

\lim_{n}a_{n}\left(u_{1}+u_{2}+\cdots+u_{n}\right)=0.

Pour conclure sa démonstration, Kolmogorov utilise le lemme de Kronecker avec \ \scriptstyle a_{n}=\tfrac{1}{n} \ , voir section suivante.

6ème étape : Conclusion dans le cas de variables centrées

Lemme 1. —  Avec les notations de l'étape "recentrage", on a

\sum_{k\ge 1}\ \text{Var}\left(\frac{Z_{k}}{k}\right)<+\infty.

Du Lemme 1 et de la Proposition 3, on déduit que, presque sûrement,

 \text{la serie }\sum_{n\ge 1}\,\frac{Z_{k}(\omega)}{k}\text{ est convergente,}

puis, grâce au lemme de Kronecker, on déduit que, presque sûrement,

\lim_{n}\ \frac{C_{n}(\omega)}n\ =\ 0,

ce qui est équivalent à la loi forte des grands nombres (pour des variables centrées), comme on l'a vu aux étapes "troncature" et "recentrage".

7ème étape : décentrage

Si on ne suppose plus les \ \scriptstyle X_{n} \ centrées, mais seulement i.i.d. et intégrables, on pose

\hat{X}_{k}= X_{k}-\mathbb{E}\left[X_{k}\right],\ \ \hat{S}_{n}= \hat{X}_{1}+\hat{X}_{2}+\cdots+\hat{X}_{n},

et, les étant centrées, i.i.d. et intégrables, la conclusion des étapes précédentes est que

 \mathbb{P}\left(\omega\in\Omega\ \left|\ \lim_{n}\frac{\hat{S}_{n}(\omega)}n=0\right.\right) = 1.

Mais

 \begin{align} \frac{\hat{S}_{n}(\omega)}n &= \frac{S_{n}(\omega)-n\mathbb{E}\left[X_{1}\right]}n \\ &= \frac{S_{n}(\omega)}n\ -\ \mathbb{E}\left[X_{1}\right]. \end{align}

Donc

 \mathbb{P}\left(\omega\in\Omega\ \left|\ \lim_{n}\frac{\hat{S}_{n}(\omega)}n=0\right.\right) = \mathbb{P}\left(\omega\in\Omega\ \left|\ \lim_{n}\frac{S_{n}(\omega)}n=\mathbb{E}\left[X_{1}\right]\right.\right) .

C.Q.F.D.

Réciproque

Supposons que l'ensemble Ωc défini par

 \Omega_c=\left\{\omega\in\Omega\  \left|\ \frac{S_{n}(\omega)}n \text{ est une suite convergente }\right.\right\}

est de probabilité 1. Notons l(ω) la limite de la suite ci-dessus, lorsqu'elle est définie, i.e. lorsqu' ω appartient à Ωc . L'ensemble Ωc est inclus dans l'ensemble suivant

 \Omega_0=\left\{\omega\in\Omega\   \left|\ \lim_n\frac{|X_{n}(\omega)|}n=0\right.\right\}

puisque, lorsqu' ω appartient à Ωc , on a

 \frac{X_{n}(\omega)}n\ =\ \frac{S_{n}(\omega)}n\ -\ \frac{n-1}n\,\frac{S_{n-1}(\omega)}{n-1}\ \rightarrow\ \ell(\omega)-1\times\ell(\omega)=0.

Ainsi, l'ensemble Ω0 lui aussi est de probabilité 1. Posons

 A_n=\left\{\omega\in\Omega\   \left|\ |X_{n}(\omega)|>n\right.\right\}

La limite supérieure des An est disjointe de l'ensemble Ω0 , donc elle est de probabilité nulle. En vertu de la loi du zéro-un de Borel, on en déduit, puisque les événements An sont indépendants, que

 +\infty>\sum_{n\ge 1}\mathbb{P}\left(|X_{n}|>n\right).

Par ailleurs, en toute généralité, comme on l'a vu lors de la ,

 \sum_{n\ge  1}\mathbb{P}\left(|X_{n}|>n\right)\ =\ \sum_{n\ge  1}\mathbb{P}\left(|X_{1}|>n\right)\ =\ \mathbb{E}\left[\left\lceil|X_{1}|\right\rceil-1\right]\ \ge\ -1+\mathbb{E}\left[|X_{1}|\right].
Page générée en 0.158 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise