Loi de Planck - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Répartition de l'intensité du rayonnement du corps noir

Émission

Spectres de rayonnement de Planck pour différentes températures

La première image ci-contre présente les spectres du rayonnement de Planck pour différentes températures entre 300 K et 1000 K. On reconnaît la forme typique de courbe en cloche avec un maximum clairement visible, une pente forte pour les faibles longueurs d'onde et une pente descendant plus doucement vers les grandes longueurs d'onde. Le maximum de rayonnement se décale vers les faibles longueurs d'onde avec la température croissante, comme le décrit la loi de déplacement de Wien. En outre comme le décrit la loi de Stefan-Boltzmann, l'exitance énergétique (correspondant à la surface sous la courbe de chaque exitance énergétique spectrale) augmente avec le puissance quatrième de la température. Une telle augmentation fait qu'il est difficile de présenter un tel graphe sur une plage de températures importante.

Spectres de rayonnements de Planck pour différentes températures, en représentation log-log

Pour pallier ce problème, le second graphe utilise une représentation logarithmique pour les deux axes. Sont présentés ici les spectres de rayonnement de Planck pour des températures de 100 K à 10 000 K.

La courbe rouge correspond à 300 K, ce qui correspond à la température ambiante. Le maximum pour cette courbe est atteint pour une longueur d'onde de 10 µm. C'est donc autour de cette longueur d'onde (infrarouges lointains) que se font les échanges d'énergie par rayonnement des objets à température ambiante. Les thermomètres infrarouges ou les caméras thermographiques fonctionnent dans ces longueurs d'ondes-ci.

La courbe pour 3000 K correspond au rayonnement typique d'une lampe à incandescence. Une partie du rayonnement est émis dans le domaine visible. Toutefois le maximum d'émission se situe encore dans l'infrarouge proche.

La courbe jaune correspond à 5777 K, la température effective du soleil. Le maximum d'émission est au milieu du domaine visible. Heureusement, la majorité du rayonnement thermique ultraviolet du soleil est absorbé par la couche d'ozone de l'atmosphère terrestre.

Réception

Comme on le voit sur le graphe précédent, l'exitance énergétique spectrale du soleil pour toutes les longueurs d'ondes est bien plus important que l'exitance des objets terrestres à 300 K. Pour une longueur d'onde de 10µm, un mètre carré de surface de soleil émet 400 fois plus qu'un mètre carré de façade de maison. Toutefois cela ne signifie pas que le rayonnement thermique environnant provient en majorité du soleil. Pour obtenir l'intensité de rayonnement rapportée à un mètre carré de surface réceptrice, Il faut multiplier la luminance spectrale par l'angle solide Ω visible depuis cette surface. Pour un observateur terrestre, le soleil ne représente qu'une très petite source (Ω = 6,8·10-5 sr). En comparaison avec un objet terrestre à 300 K remplissant le champ de vision de l'observateur à moitié (Ω = 3,14 sr), l'intensité de rayonnement du soleil à λ=10µm est plus faible d'un facteur 400·(6,8·10-5/3,14) ≈ 1/100, donc pratiquement négligeable. À ceci s'ajoute l'absorption d'une partie du rayonnement thermique du soleil par l'atmosphère, et une diminution supplémentaire due au fait que la surface réceptrice ne reçoit pas le rayonnement orthogonalement.

Lois de rayonnement et hypothèse quantique

Considérons le cas d'une cavité cubique de côté L et de volume V, dont les parois sont parfaitement réfléchissantes. A l'équilibre, ne peuvent y apparaître que des ondes stationnaires. Ces ondes peuvent être dirigées suivant n'importe quelle direction, mais doivent satisfaire à une même condition : un nombre entier de demies-longueurs d'onde doit passer entre deux surfaces parallèles de la cavité. Il ne peut donc y avoir que certains états vibratoires discrets. Le rayonnement total à l'intérieur de la cavité provient de ces différentes ondes stationnaires. Il y a \frac{8 \pi V}{c^3} \nu^2 \mathrm{d}\nu états vibratoires possibles dans l'intervalle de fréquences entre ν et ν+dν. (le nombre d'états vibratoires possibles augmente avec la fréquences). La densité d'états, c’est-à-dire le nombre d'états vibratoire possibles dans l'intervalle de fréquences entre ν et ν+dν et par unité de volume, vaut :

g(\nu) \, \mathrm{d}\nu \, = \, \frac{8 \pi}{c^3} \, \nu^2 \, \mathrm{d}\nu .

En considérant ces états vibratoires comme des oscillateurs harmoniques de fréquence ν, on devrait s'attendre d'après le théorème d'équipartition de l'énergie à ce que, à l'équilibre thermique du milieu à la température T, chaque oscillateur porte l'énergie cinétique kT/2 et l'énergie potentielle kT/2, soit une énergie totale de kT. La densité d'énergie dans la cavité dans l'intervalle de fréquence entre ν et ν+dν serait alors :

U_{\nu}^{RJ}(\nu, T)  \, \mathrm{d}\nu \, = \, \frac{8 \pi}{c^3} \, kT \, \nu^2 \, \mathrm{d}\nu .

Ceci est la loi de rayonnement de Rayleigh-Jeans. Elle rend bien compte de la densité d'énergie mesurée pour les faibles fréquences, mais prévoit faussement, avec l'augmentation de la fréquence, une augmentation quadratique de la densité d'énergie (catastrophe ultraviolette). Ce qui conduirait à ce que la cavité contienne une densité d'énergie infinie : chaque état vibratoire ne porte que l'énergie kT, mais une infinité de tels états vibratoires sont excités.

Les physiciens étaient conscients de cette conséquence et cherchèrent une formule différente pour résoudre le problème de la catastrophe ultraviolette. Wien établit sa loi du rayonnement en 1896, mais elle ne parvint pas à décrire les faibles fréquences. Planck l'améliora en 1900 en commençant par introduire un simple "-1" dans la loi du rayonnement de Wien. Cette formule n'était qu'empirique, mais elle correspondait bien aux mesures expérimentales sur l'ensemble du spectre de fréquences. Mais Planck n'en était pas satisfait. Il réussit à remplacer la constante C et c de la loi de Wien par des constantes naturelles; seul restait un facteur "h". C'était l'heure de naissance de la physique quantique : Planck devait concéder, contre ses propres convictions, que les transferts d'énergie ne se faisaient pas continûment mais de manière discrète, par des multiples d'unités de "h" (h comme Hilfskonstante : constante d'aide), appelé plus tard quantum d'action de Planck en son honneur.

D'après cette hypothèse quantique introduite par Planck, un oscillateur de fréquence ν ne peut prendre que des états d'énergie discrets multiples de hν, et ne peut être excité qu'à partir d'une énergie minimum hν. Les états vibratoires dont l'énergie minimale hν est nettement supérieure à l'énergie thermique kT disponible ne peuvent pas être excités et sont donc gelés. Les états vibratoires dont l'énergie minimale hν est très légèrement supérieure à kT peuvent être excités avec une certaine probabilité, et une fraction de ces états participent donc au rayonnement total de la cavité. Les états vibratoires d'énergie minimale hν inférieure à kT, donc de fréquences inférieures, sont très certainement excités.

La physique statistique montre que dans ces conditions, un état vibratoire porte en moyenne l'énergie \frac{h\nu}{e^{\left(\frac{h\nu}{kT}\right)}-1} . En multipliant cette énergie par la densité d'états vibratoires possibles g(\nu) \, \mathrm{d}\nu , on obtient la densité d'énergie de Planck :

 U^o_{\nu}(\nu, T) \, \mathrm{d}\nu \, = \, \frac{8 \pi h \nu^{3}}{c^3} \frac{1}{e^{\left(\frac{h\nu}{kT}\right)}-1} \, \mathrm{d}\nu .


La catastrophe ultraviolette est donc évitée, car les états vibratoires de haute fréquence qui pourraient exister d'après des considérations géométriques ne peuvent pas être excités à cause de leur énergie d'excitation minimale hν trop importante, et ne participent donc pas à la densité d'énergie dans la cavité. La densité spectrale d'énergie diminue donc avec les plus hautes fréquence après être passée par un maximum, et la densité totale d'énergie reste finie.

Page générée en 0.130 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise