La logique mathématique est née à la fin du XIXe siècle de la logique au sens philosophique du terme ; elle est l'une des pistes explorées par les mathématiciens de cette époque afin de résoudre la crise des fondements dus à la complexification des mathématiques et à l'apparition des paradoxes. Ses débuts sont marqués par la rencontre entre deux idées nouvelles :
Les premières tentatives de traitement formel des mathématiques sont dues à Leibniz et Lambert ; Leibniz a en particulier introduit une grande partie de la notation mathématique moderne (usage des quantificateurs, symbole d'intégration, etc.). Toutefois on ne peut parler de logique mathématique qu'à partir du milieu du XIXe siècle, avec les travaux de George Boole (et dans une moindre mesure ceux d'Auguste De Morgan) qui introduit un calcul de vérité où les combinaisons logiques comme la conjonction, la disjonction et l'implication, sont des opérations analogues à l'addition ou la multiplication des entiers, mais portant sur les valeurs de vérité faux et vrai (ou 0 et 1) ; ces opérations booléennes se définissent au moyen de tables de vérité.
Le calcul de Boole véhiculait l'idée apparemment paradoxale mais qui devait s'avérer spectaculairement fructueuse que le langage mathématique pouvait se définir mathématiquement et devenir un objet d'étude pour les mathématiciens. Toutefois il ne permettait pas encore de résoudre les problèmes de fondements. Dès lors, nombre de mathématiciens ont cherché à l'étendre au cadre général du raisonnement mathématique et on a vu apparaître les systèmes logiques formalisés ; l'un des premiers est dû à Frege au tournant du XXe siècle.
En 1900 au cours d'une très célèbre conférence au congrès international des mathématiciens à Paris, David Hilbert a proposé une liste des 23 problèmes non résolus les plus importants des mathématiques d'alors. Le deuxième était celui de la cohérence de l'arithmétique, c’est-à-dire de démontrer par des moyens finitistes la non-contradiction des axiomes de l'arithmétique.
Le programme de Hilbert a suscité de nombreux travaux en logique dans le premier quart du siècle, notamment le développement de systèmes d'axiomes pour les mathématiques : les axiomes de Peano pour l'arithmétique, ceux de Zermelo complété par Skolem et Fraenkel pour la théorie des ensembles et le développement par Whitehead et Russell d'un programme de formalisation des mathématiques, les Principia Mathematica. C'est également la période où apparaissent les principes fondateurs de la théorie des modèles : notion de modèle d'une théorie, théorème de Löwenheim-Skolem.
En 1929 Kurt Gödel montre dans sa thèse de doctorat son théorème de complétude qui énonce le succès de l'entreprise de formalisation des mathématiques : tout raisonnement mathématique peut en principe être formalisé dans le calcul des prédicats. Ce théorème a été accueilli comme une avancée notable vers la résolution du programme de Hilbert, mais un an plus tard, Gödel démontrait le théorème d'incomplétude (publié en 1931) qui montrait irréfutablement l'impossibilité de réaliser ce programme.
Ce résultat négatif n'a toutefois pas arrêté l'essor de la logique mathématique. Les années 30 ont vu arriver une nouvelle génération de logiciens anglais et américains, notamment Alonzo Church, Alan Turing, Stephen Kleene, Haskell Curry et Emil Post, qui ont grandement contribué à la définition de la notion d'algorithme et au développement de la théorie de la complexité algorithmique (théorie de la calculabilité, théorie de la complexité). La théorie de la démonstration de Hilbert a également continué à se développer avec les travaux de Gerhard Gentzen qui a produit la première démonstration de cohérence relative et initié ainsi un programme de classification des théories axiomatiques.
Le résultat le plus spectaculaire de l'après-guerre est dû à Paul Cohen qui démontre en utilisant la méthode du forcing l'indépendance de l'hypothèse du continu en théorie des ensembles, résolvant ainsi le 1er problème de Hilbert. Mais la logique mathématique subit également une révolution due à l'apparition de l'informatique ; la découverte de la correspondance de Curry-Howard qui relie les preuves formelles au lambda-calcul de Church et donne un contenu calculatoire aux démonstrations va déclencher un vaste programme de recherche.