Lidar - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Histoire

Les premières mesures lidar ont été effectuées en mai 1962 (voir [Smullin and Fiocco, 1962], ainsi que la première page du New York Times, datée du 11 mai 1962). Ces dernières furent effectuées par L.D. Smullin et son thésard G. Fiocco, afin de vérifier les possibles applications du laser à rubis récemment développé par Ted Maiman en 1960, utilisé en tant que télémètre, afin de mesurer la distance Terre-Lune (Project Luna See, aussi appelé ironiquement lunacy, montrant le peu de crédibilité de ce projet au départ). Georgio Fiocco et L.D. Smullin, obtinrent les premiers échos lidar de la surface lunaire, pendant trois nuits de mai 1962. Ce projet fut un incontestable succès.

Rapport de dépolarisation

De nombreux systèmes lidar récents sont équipés d'un dispositif sensible à la polarisation lumineuse. Dans ces systèmes, l'onde laser émise est polarisée linéairement dans un plan appelé plan parallèle. L'énergie lumineuse rétrodiffusée par les composants atmosphériques, et détectée par le télescope du lidar, n'est souvent plus polarisée linéairement. On quantifie la modification de l'état de polarisation lumineuse par le rapport de dépolarisation \delta=\frac{I_{\| }}{I_\perp}, avec I_{\| } et I_{\perp} les énergies lumineuses détectées dans les plans respectivement parallèle et perpendiculaire au plan d'émission.

Le rapport de dépolarisation est une mesure extrêmement utile car elle permet de distinguer facilement la phase d'un nuage détecté : les gouttelettes d'eau composant un nuage d'eau liquide, de par leur forme sphérique, produisent un rapport de dépolarisation nul (δ = 0) ; en revanche, les cristaux de glace composant un Cirrus produisent des rapports de dépolarisation élevés de l'ordre de 0.2 < δ < 0.8.

Équation Lidar

L'expression de la distribution verticale du signal lidar rétrodiffusé est donnée par l'équation suivante (Collis and Russel, 1976) pour un faisceau laser de longueur d'onde donné :

 P(z) = K F_0 \beta(z) \frac{A}{z^2} \exp\left[ -2 \int_0^z  \alpha(z')dz'\right ]

  • K est une constante instrumentale, prenant en compte les éléments optiques et électroniques qui composent la chaîne de traitement de l'énergie lumineuse rétrodiffusée ;
  • F0 représente l'énergie initiale du faisceau (en J.s − 1);
  • A est l'aire du récepteur en m2;
  • α(z) représente le coefficient d'extinction total (absorption+atténuation) à l'altitude z en m − 1;
  • β(z) représente le coefficient de rétrodiffusion à l'altitude z en m − 1sr − 1.

P a la dimension d'une puissance (J.s − 1 ou W).

Utilisation

Ses domaines d'utilisation sont multiples : météorologie : détection de la force et de la direction du vent par effet Doppler, étude de l'atmosphère (aérosols, vapeur d'eau, ozone), réalisation de Modèles Numériques de Terrain…

Représentation graphique

Les observations lidar sont principalement représentées sous deux formes :

  • Un profil lidar est une figure simple en 2 dimensions, représentant l'évolution du signal lidar en abscisse en fonction de l'altitude en ordonnée.
  • Une série temporelle (appelée aussi RHI pour Range-Height-Indicator) est un carte couleur en 2 dimensions, où les intensités du signal lidar sont codées à la fois en fonction du temps (en abscisse) et de l'altitude (en ordonnée) par une couleur appartenant à une échelle d'intensité.
Page générée en 0.289 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise