Laser - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Rayon laser à travers un dispositif optique
Démonstration de laser hélium-néon au laboratoire Kastler-Brossel à l'Université Pierre et Marie Curie.
Principe de fonctionnement du laser : 1 - milieu excitable 2 - énergie de pompage 3 - miroir totalement réfléchissant 4 - miroir semi-réfléchissant 5 - faisceau laser

Un laser est un appareil émettant de la lumière (rayonnement électromagnétique) amplifiée par émission stimulée. Le terme laser provient de l'acronyme anglo-américain « light amplification by stimulated emission of radiation » (en français : « amplification de la lumière par émission stimulée de rayonnement »). Le laser produit une lumière spatialement et temporellement cohérente basée sur l'effet laser. Descendant du maser, le laser s'est d'abord appelé maser optique.

Une source laser associe un amplificateur optique basé sur l'effet laser à une cavité optique, encore appelée résonateur, généralement constituée de deux miroirs, dont au moins l'un des deux est partiellement réfléchissant, c'est-à-dire qu'une partie de la lumière sort de la cavité et l'autre partie est réinjectée vers l'intérieur de la cavité laser. Avec certaines longues cavités, la lumière laser peut être extrêmement directionnelle. Les caractéristiques géométriques de cet ensemble imposent que le rayonnement émis soit d'une grande pureté spectrale, c’est-à-dire temporellement cohérent. Le spectre du rayonnement contient en effet un ensemble discret de raies très fines, à des longueurs d'ondes définies par la cavité et le milieu amplificateur. La finesse de ces raies est cependant limitée par la stabilité de la cavité et par l'émission spontanée au sein de l'amplificateur (bruit quantique). Différentes techniques permettent d'obtenir une émission autour d'une seule longueur d'onde.

Au XXIe siècle, le laser est plus généralement vu comme une source possible pour tout rayonnement électromagnétique, dont fait partie la lumière visible. Les longueurs d'ondes concernées étaient d'abord les micro-ondes (maser), puis elles se sont étendues aux domaines de l'infrarouge, du visible, de l'ultraviolet et commencent même à s'appliquer aux rayons X.

Principe de fonctionnement

Phénomènes mis en jeu

Pour comprendre comment fonctionne un laser, il est nécessaire d'introduire le concept de quantification de la matière : les électrons sont répartis sur des niveaux d'énergie discrets (les « couches »). Cette hypothèse est fondamentale et non intuitive : si l'on considère l'image selon laquelle les électrons ne peuvent se trouver que sur certaines orbitales bien précises autour du ou des noyaux atomiques.

Dans la suite, on considérera un atome ne possédant qu'un électron, pour simplifier la discussion. Celui-ci est susceptible de se trouver sur plusieurs niveaux. La connaissance du niveau sur lequel se trouve cet électron définit l'état de l'atome. Ces états sont numérotés par ordre croissant d'énergie avec un nombre entier n, pouvant prendre les valeurs 1, 2, ... L'état n = 1 est donc l'état d'énergie la plus basse, correspondant à un électron sur l'orbitale la plus proche du noyau.

Venons-en aux principaux processus d'interaction entre la lumière et la matière, à savoir l'absorption, l'émission stimulée et l'émission spontanée.

  • L’absorption — Lorsqu'il est éclairé par un rayonnement électromagnétique (la lumière), un atome peut passer d'un état n à un état n' > n, en prélevant l'énergie correspondante sur le rayonnement. Ce processus est résonnant : la fréquence du rayonnement ω doit être proche d'une fréquence de Bohr atomique pour qu'il puisse se produire. Les fréquences de Bohr atomiques sont définies par \hbar\omega_{nn'}=(E_{n'}-E_n), où En' > En sont les énergies des états n' et n. On peut interpréter ce processus comme l'absorption d'un photon du rayonnement (d'énergie \hbar\omega=h\nu) faisant passer l'atome du niveau d'énergie En vers le niveau d'énergie En'. La condition de résonance correspond alors à la conservation de l'énergie.
  • L’émission stimulée — Ce processus est le symétrique du précédent : un atome dans l'état n' peut se « désexciter » vers le niveau n sous l'effet d'une onde électromagnétique, qui sera alors amplifiée. Comme pour l'absorption, ce processus n'est possible que si la fréquence du rayonnement ω est proche de la fréquence de Bohr ωnn'. On peut l'interpréter comme l'émission d'un photon d'énergie \hbar\omega qui vient s'« ajouter » au rayonnement.
  • L’émission spontanée — Un atome dans un état excité n' peut se désexciter vers un état n, même en l'absence de rayonnement. Le rayonnement est émis dans une direction aléatoire, et sa fréquence est égale à la fréquence de Bohr ωnn'. On peut interpréter ce processus comme l'émission d'un photon d'énergie \hbar\omega_{nn'} dans une direction aléatoire.

Fonctionnement

Un laser est fondamentalement un amplificateur de lumière (fonctionnant grâce à l'émission stimulée) dont la sortie est branchée sur l'entrée.

L'amplificateur est un ensemble d'atomes ou molécules que l'on fait passer d'un état fondamental ou faiblement excité n à un état plus fortement excité n' (plus énergétique - on parle de « pompage »), au moyen d'une source d'énergie extérieure (par exemple un générateur électrique, ou un autre laser...). Ces atomes peuvent alors se désexciter vers l'état n, en émettant des photons de fréquence autour de ωnn'. Ainsi un rayonnement de fréquence \omega\simeq\omega_{nn'} passant à travers ce milieu peut être amplifié par des processus d'émission stimulée. Il peut également être absorbé : il n'y aura amplification que si les atomes sont plus nombreux à être dans l'état n' (susceptible d'émettre) que dans l'état n (susceptible d'absorber) : il est nécessaire d'avoir une « inversion de population ».

Le rayonnement sortant de cet amplificateur est rebouclé sur son entrée au moyen de miroirs, qui constituent une « cavité » (où la lumière est piégée). Bien sûr, un dispositif (comme un miroir partiellement réfléchissant) permet d'extraire de la lumière de ce système, pour obtenir le rayonnement laser utilisable. Ainsi un rayonnement initialement présent dans le système va être amplifié une première fois, puis rebouclé, puis réamplifié, etc. On peut ainsi construire un rayonnement extrêmement important, même à partir d'un rayonnement extrêmement faible (comme un seul photon émis spontanément dans la cavité).

On peut comparer ce processus à l'effet Larsen, qui se produit lorsqu'un amplificateur (la chaîne HiFi) a sa sortie (le haut-parleur) « branchée » sur l'entrée (le micro). Alors un bruit très faible capté par le micro est amplifié, émis par le haut-parleur, capté par le micro, réamplifié, et ainsi de suite... Bien sûr l'intensité du son ne croît pas indéfiniment (tout comme l'intensité de la lumière dans un laser) : l'amplificateur a des limites (il existe un volume maximum du son pouvant être produit). La fréquence du son émise par ce procédé est particulière et dépend de l'amplificateur ainsi que de la distance entre le haut-parleur et le micro : il en est de même pour un laser.

Page générée en 0.024 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise