La stéréoisomérie désigne les isomères de configuration, c'est-à-dire les molécules de constitution identique mais dont l'organisation spatiale des atomes est différente. On classe les isomères de configuration en deux grands groupes : les énantiomères et les diastéréoisomères.
Aussi appelés isomères optiques, les énantiomères sont deux molécules qui sont l'image l'une de l'autre par un miroir et ne sont pas superposables : ils présentent en effet une chiralité. Elles sont symétriques (plan de symétrie), elles ne sont donc pas superposables à leurs images dans le miroir. L'exemple le plus concret de chiralité est celui d'une main droite non superposable sur une main gauche.
Les différents énantiomères sont nommés avec les règles Cahn-Ingold-Prelog (UIPAC) qui précisent la configuration absolue des centres stéréogènes, en utilisant les descripteurs R et S.
Exemples d'énantiomères ayant une efficacité clinique en médecine :
Les diastéréoisomères (que l'on écrit aussi diastéréo-isomères) sont les stéréoisomères qui ne sont pas énantiomères.
Lorsque, sur chacun des deux côtés d'une double liaison, on trouve deux groupes différents, on distingue deux configurations : Z et E. La libre rotation autour de la double liaison n'est pas possible, du fait de la présence d'une liaison π : il en résulte une molécule plane ayant deux configurations possibles.
En utilisant l'ordre de priorité d'après la convention CIP (Cahn, Ingold, Prelog) on définit les deux isoméries ainsi :
exemple : l'acide 3-aminobut-2-ènoïque, ci-contre. Les priorités sont COOH > H et NH2 > CH3. On a donc dans le premier cas les groupes prioritaires du même côté du plan : c'est donc la représentation de l'acide (Z)-3-aminobut-2-ènoïque. À l'inverse, dans la seconde représentation, les groupes prioritaires sont opposés : la molécule représentée est donc l'acide (E)-3-aminobut-2-ènoïque.
De manière générale, les configurations Z sont plus rares car les groupements prioritaires (souvent les plus volumineux) sont déstabilisés par leur encombrement stérique. Mais certaines configurations peuvent être stabilisées, notamment par chélation.
NB : On utilise moins les termes cis et trans qui qualifient plutôt des positions relatives de groupements sans tenir compte de leur priorité. Par exemple, sur l'illustration de la configuration E, on dira que le H est en trans du CH3, et que le H est en cis du NH2.
Il y a diastéréoisométrie entre deux molécules isomères possédant même enchaînement de liaison, qui comportent deux ou plusieurs centres de chiralité (des atomes portant 4 substituants différents) et qui ne sont pas des énantiomères. Exemple : les formes (R)-(S) et (R)-(R) de l'acide tartrique sont des diastéréoisomères et possèdent des propriétés physiques différentes.
Ces isomères ont une même formule développée. Ils ne se différencient que par rotation autour d'une liaison simple (liaison sigma), sans la rompre. Par exemple le butane (C4H10) a trois conformères.
Ces isomères ont une même formule développée. On parle d'atropoisomérie, lorsque la barrière d'activation autour d'une liaison simple (liaison sigma) est suffisante pour qu'on puisse caractériser chacun des atropoisomères. Couramment utilisée en catalyse asymétrique, cette forme d'isomérie est classiquement observée sur des biphényles substitués en ortho.
Deux épimères ne diffèrent entre eux que par la configuration absolue d'un seul carbone asymétrique, comme par exemple entre le D-mannose et le D-glucose ou encore entre le D-glucose et le D-galactose.
C’est un cas particulier d’épimèrie pour le carbone 1 des oses. Il permet de décrire notamment la convention α et β. Si la fonction hydroxyle du carbone 1 est en dessous du plan (représentation de Haworth), l’ose est dit α (alpha) alors que si l’hydroxyle du carbone 1 est au-dessus du plan, l’ose est dit β (béta).
Exemple : α-glucose : sur l'image, le carbone 1 est à droite et la fonction hydroxyle n'est ni en haut ni en bas (il faudrait choisir pour avoir du α ou β).
Cette nomenclature est très importante pour décrire les liaisons chimiques contractées dans les disaccharides et les polysaccharides.
Exemple : le saccharose (α-D-glucopyrannosyl(1→2)β-D-fructofurannoside) est un dissacharide formé d'α-glucose et d'β-fructose liés en α1-2.