Indubitablement, le fait que la mécanique quantique tolère l'existence d'états intriqués, états ayant effectivement été observés en laboratoire et dont le comportement est en accord avec celui prévu par la mécanique quantique, implique que la mécanique quantique est une théorie physique non-locale.
Par contre, la mécanique quantique est bien compatible avec la théorie de la relativité, car on démontre que les états intriqués ne peuvent pas être utilisés pour transmettre une information quelconque d'un point à un autre de l'espace-temps plus rapidement qu'avec de la lumière. La raison est que le résultat de la mesure relatif à la première particule est toujours aléatoire, dans le cas des états intriqués comme dans le cas des états non-intriqués : il est donc impossible de « transmettre » quelque information que ce soit, puisque la modification de l'état de l'autre particule, pour instantanée qu'elle soit, conduit à un résultat de la mesure relatif à la seconde particule qui est toujours aussi aléatoire que celui relatif à la première particule ; les corrélations entre les mesures des deux particules resteront indétectables tant que les résultats des mesures ne seront pas comparés, ce qui implique nécessairement un échange d'information classique, respectueux de la relativité. Par suite, la mécanique quantique est bien également parfaitement compatible avec le principe de causalité.
Il est plus aisé de définir ce qu'est un état non intriqué, ou séparable, que de définir directement ce qu'est un état intriqué.
Dans le cas où le système global {S1+S2} peut être décrit par un vecteur d'état, son état est un vecteur de l'espace de Hilbert
Ces états sont appelés états séparables ou factorisables. Le système S1 est dans un état quantique clairement identifié,
Un état intriqué est par définition un état non séparable, qui s'écrit en général sous la forme
C'est donc une superposition d'états d'un système bipartite. Pour illustrer la différence entre états séparables et intriqués, supposons par exemple que
est un état séparable, puisqu'il peut être factorisé comme indiqué ci-dessus, tandis que l'état :
est un état intriqué.
Si
où a, b, c et d sont quatre nombres complexes. Dans le second membre, le premier terme représenterait l'état du sous-système S1 dans l'espace H1, et le second terme représenterait l'état du sous-système S2 dans l'espace H2. On obtient alors le système suivant :
Par suite, il existe des états a priori légitimes d'un système global {S1 + S2} qui ne peuvent pas s'écrire sous la forme du produit tensoriel d'un état d'un sous-système S1 par un état d'un sous-système S2 ; pour de tels états intriqués, il est donc impossible de parler de « l'état de S1 » : seul le système global {S1 + S2} a un état défini, état défini par le premier membre de la relation ci-dessus. En un sens, il n'est plus possible de séparer conceptuellement les deux systèmes.
La principale caractéristique de l'état
Expérimentalement, il n'est pas possible de préparer un état quantique bien déterminé avec une reproductibilité de 100%. Pour tenir compte de cette préparation imparfaite, on décrit l'état du système par une matrice densité, qui pondère chaque état pur par la probabilité de produire cet état :
Ces états sont effectivement séparables, car il n'y a aucune corrélation entre les mesures faites sur S1 et celles faites sur S2, mais la définition peut être étendue, et l'écriture la plus générale pour la matrice densité d'un état séparable est :
où pi est une loi de probabilité (pi > 0 et
Cette définition présente l'avantage d'inclure les systèmes corrélés classiquement dans les états séparables. Supposons par exemple une expérience qui produise deux particules simultanément, et aléatoirement une fois sur deux un état
Dans le formalisme de la matrice densité, un état intriqué est simplement défini comme un état qui n'est pas séparable. Dans le cas général, même lorsque l'on connaît la matrice densité d'un système, il est difficile de dire si l'état obtenu est intriqué ou séparable. Une condition nécessaire est de regarder si la « transposée partielle » de la matrice densité est positive. Pour les dimensions 2 et 3, cette condition est également suffisante.