Identité remarquable - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Identités remarquables de degré n

Formule du binôme

La même technique de démonstration que celle utilisé pour les formules de degré 2 montre que, si a et b désignent toujours deux nombres :

(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\,
(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3\,

Appliqué encore une fois, on obtient :

(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 +4ab^3 + b^4\,
(a - b)^4 = a^4 - 4a^3b + 6a^2b^2 -4ab^3 + b^4\,

On peut la généraliser à un degré n quelconque, à l'aide de la formule du binôme :

(x+y)^n=\sum_{k=0}^n {n \choose k} x^{n-k} y^k

Les coefficients de l'expression, considérée comme un polynôme en x et en y sont appelés coefficients binomiaux. Comme b peut prendre une valeur négative, on obtient bien les deux formes précédentes.

La formule s'applique même si a et b ne sont pas des nombres. Ces lettres peuvent désigner deux matrices qui commutent entre elles. De manière générale, la formule est vraie dans un anneau, si a et b commutent.

Différence ou somme de puissances

Il est aussi possible de généraliser la troisième identité remarquable de degré 2. Si a et b désignent deux nombres :

a^3 + b^3 = (a + b) (a^2 - ab + b^2)\,
a^3 - b^3 = (a - b) (a^2 + ab + b^2) \,
a^4 + b^4 = (a^2 + ab\sqrt{2}+ b^2 ) (a^2 - ab\sqrt{2} + b^2 )\,

Si l'on travaille dans un ensemble qui n'est pas celui des nombres, la dernière formule n'est valable que si √2 existe, c'est-à-dire s'il existe une valeur c telle que c2 soit égal à 1 + 1. Il faut, en conséquence que l'élément neutre de la multiplication existe.

La formule suivante permet de généraliser la démarche :

a^n - b^n = (a - b) (a^{n-1} + a^{n-2}b + \cdots + ab^{n-2} + b^{n-1} ) \,

Identités remarquables et arithmétique

Identité de Brahmagupta

Brahmagupta, un mathématicien indien du VIe siècle découvre une identité remarquable du quatrième degré :

\left(a^2 - n\cdot b^2\right)\left(c^2 - n\cdot d^2\right) = \left(ac+n\cdot bd\right)^2 - n\cdot \left(ad+bc\right)^2

Brahmagupta l'utilise dans le cas où a, b, c, d et n sont des nombres entiers. Elle permet de calculer une bonne approximation d'une racine. Pour calculer √3, il remarque que 22 - 3.12 = 1. Il applique son identité plusieurs fois, toujours avec n = 3. La première fois, il pose a = c = 2, b = d = 1. Il obtient :

(2^2 - 3\cdot1)(2^2 - 3\cdot1)=(2\cdot2 + 3\cdot1)^2 - 3\cdot(2\cdot1 + 1\cdot2)^2= 7^2 - 3\cdot 4^2=1

Il recommence avec cette fois avec : a = c = 7, b = d = 4. Il obtient une nouvelle manière d'écrire 1 :

97^2 - 3\cdot 56^2 = 1

Il réapplique la même logique, il obtient encore une autre manière d'écrire 1:

18\,817^2 - 3\cdot 10\,864^2 = 1

Cette égalité s'écrit encore :

18\,817^2 = 3\cdot 10\,864^2 + 1\quad\text{et}\quad \left(\frac {18\,817}{10\,864}\right)^2 = 3 + \frac 1{10\,864^2}

Il obtient une fraction dont le carré est presque égal à 3, ce qui revient à dire que 18 817/10 864 est presque égal à √3. Si on calcule la fraction, on trouve un résultat dont les neuf premiers chiffres significatifs fournissent la meilleure approximation possible (avec le même nombre de décimales), à savoir : 1,73205081. Il utilise aussi sa formule pour trouver des solutions à une équation diophantienne difficile, dite de Pell-Fermat. Sa méthode porte le nom de chakravala.

Identité des quatre carrés d'Euler

L'identité des quatre carrés d'Euler relie entre eux huit nombres. Elle prend la forme suivante :

(a_1^2+a_2^2+a_3^2+a_4^2)(b_1^2+b_2^2+b_3^2+b_4^2)\,
=(a_1 b_1-a_2 b_2 - a_3 b_3 - a_4 b_4)^2 + (a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3)^2\,
+\,(a_1 b_3 - a_2 b_4 + a_3 b_1 + a_4 b_2)^2 + (a_1 b_4 + a_2 b_3 - a_3 b_2 + a_4 b_1)^2\,

Elle est utilisée, entre autres pour démontrer le théorème des quatre carrés qui indique que tout nombre entier est somme de quatre carrés.

Page générée en 0.082 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise