Icosaèdre - Définition et Explications

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Icosaèdre
Icosaèdre

Type Polyèdre régulier
Faces Triangle
Éléments :
 · Faces
 · Arêtes
 · Sommets
 · Caractéristique
 
20
30
12
2
Faces par sommet 5
Sommets par face 3
Isométries A5xC2
Dual Dodécaèdre (Un dodécaèdre est un solide composé de 12 faces. Le préfixe dodéca-, d'origine grecque, fait référence au nombre de faces.)
Propriétés Deltaèdre régulier et convexe (En géométrie, un objet est convexe si pour toute paire de points { A , B } de cet objet, le segment [AB] qui les joint est entièrement contenu dans l'objet. Par exemple,...)

En mathématiques (Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide de raisonnements logiques sur des concepts tels que les nombres, les...), et plus précisément en géométrie (La géométrie est la partie des mathématiques qui étudie les figures de l'espace de dimension 3 (géométrie euclidienne) et, depuis le XVIIIe siècle, les figures d'autres types...), un icosaèdre est un solide de dimension (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre si c'est une pièce de révolution.) trois, de la famille des polyèdres, c'est-à-dire que sa surface (Une surface désigne généralement la couche superficielle d'un objet. Le terme a plusieurs acceptions, parfois objet géométrique, parfois frontière physique, et est souvent abusivement confondu avec sa...) est composée d'un nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) fini de polygones et qu'il se décrit à l'aide de ses sommets ou de ses arêtes ou encore de ses différentes faces. Plus exactement, un icosaèdre est un polyèdre (Un polyèdre est une forme géométrique à trois dimensions ayant des faces planes qui se rencontrent le long d'arêtes droites. Le mot polyèdre provient du grec classique...) contenant exactement vingt faces. Le préfixe icosa-, d'origine grecque, fait référence au nombre de faces.

Il existe un icosaèdre régulier convexe. Le polyèdre est dit régulier si toutes les arêtes possèdent la même longueur (La longueur d’un objet est la distance entre ses deux extrémités les plus éloignées. Lorsque l’objet est filiforme ou en forme de lacet, sa longueur est celle de l’objet complètement...) et si tous les angles entre deux arêtes partageant un sommet et une même face sont égaux. Si tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) segment dont les extrémités sont à l'intérieur du polyèdre est intégralement à l'intérieur du polyèdre, on parle de convexité. Il existe 5 polyèdres à la fois réguliers et convexes, ils sont appelés solides de Platon (Platon (en grec ancien Πλάτων / Plátôn), Athènes, 428 - 427 av. J.-C., 347 - 346 av. J.-C., est un philosophe...), en l'honneur du philosophe grec Platon.

Le squelette (Le squelette est une charpente animale rigide servant de support pour les muscles. Il est à la base de l'evolution des vertébrés. Celui ci leur a fourni...) de l'icosaèdre régulier, l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un...) de ses sommets reliés par ses arêtes, forme un graphe (Le mot graphe possède plusieurs significations. Il est notamment employé :) appelé graphe icosaédrique.

Le groupe des rotations de l'icosaèdre est celui formé par les rotations de l'espace qui laissent invariant la position globale de l'icosaèdre, tout en permutant certaines faces. Il comporte 60 éléments et est une copie du groupe alterné (En mathématiques, et plus précisément en théorie des groupes, le groupe alterné de degré n, souvent noté An, est un sous-groupe distingué du...) de degré (Le mot degré a plusieurs significations, il est notamment employé dans les domaines suivants :) 5.

Un autre solide de Platon (En géométrie euclidienne, un solide de Platon est un polyèdre régulier convexe.  Entre les polygones réguliers convexes de la géométrie plane et...) partage avec l'icosaèdre le même groupe de rotations, le dodécaèdre. On obtient un dodécaèdre en considérant le solide dont les sommets sont les centres des faces d'un icosaèdre. Réciproquement, on obtient un icosaèdre en considérant le solide ayant pour sommets les centres des faces d'un dodécaèdre. On dit que les solides de Platon icosaèdre et dodécaèdre sont duaux.

Géométrie de l'icosaèdre régulier convexe

Construction manuelle d'un icosaèdre

Si le bol inférieur est bleu (Bleu (de l'ancien haut-allemand « blao » = brillant) est une des trois couleurs primaires. Sa longueur d'onde est comprise approximativement entre 446 et 520...) et celui supérieur rouge (La couleur rouge répond à différentes définitions, selon le système chromatique dont on fait usage.), on obtient la figure illustrée ici.
Il existe de nombreux patrons de l'icosaèdre régulier, celui-ci est un exemple.

Un icosaèdre se construit à l'aide de 20 triangles équilatéraux de même dimension (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre...). On commence par assembler 5 des triangles par leurs arêtes de telle manière qu'ils forment un bol avec une pointe en bas. Ainsi la base du solide est un sommet partagé par les 5 triangles et le bord est composé de 5 segments, tous de même longueur, formant (Dans l'intonation, les changements de fréquence fondamentale sont perçus comme des variations de hauteur : plus la fréquence est élevée, plus la hauteur perçue est haute...) un pentagone régulier. Sur chacun des 5 segments formant la surface du bol, on colle (Une colle ou la glu est un produit de nature liquide ou gélatineuse servant à lier des pièces entre elles. Ces pièces peuvent être de même nature ou de différents matériaux.) un nouveau triangle (En géométrie euclidienne, un triangle est une figure plane, formée par trois points et par les trois segments qui les relient. La dénomination de...) de manière à ce que le côté supérieur de chaque triangle du bol soit aussi le côté inférieur d'un des 5 triangles ajoutés. On redresse ensuite les 5 triangles supérieurs de manière à ce que leurs faces soient verticales. On obtient alors un bol plus vaste, composé de 10 triangles, et dont la partie supérieure est formée de 5 dents .

On construit une deuxième forme identique à la première. On a alors utilisé l'intégralité des 20 triangles. La deuxième forme s'emboite exactement dans la première, formant un polyèdre régulier (Un polyèdre est dit régulier s'il est constitué de faces toutes identiques et régulières, et que tous ses sommets sont identiques. Ils sont au nombre de...). Il est illustré sur la figure de droite, le bol inférieur est bleu. On remarque sa calotte inférieure, puis les 5 dents, dont 3 sont face à un observateur et 2 derrière. Le bol supérieur, en rouge sur la figure possède la même géométrie. Pour les emboiter, il suffit de placer la calotte en haut et 2 dents en face de l'observateur.

On peut encore construire l'icosaèdre à l'aide du patron illustré sur la figure de droite. L'icosaèdre s'obtient en collant le côté libre du triangle jaune (Il existe (au minimum) cinq définitions du jaune qui désignent à peu près la même couleur :) en haut à gauche sur le côté libre du triangle orange, en bas à droite. Les 5 triangles rouges, connexes aux triangles orange sont alors approchés pour que leurs sommets libres se confondent en un seul point (Graphie). La même opération, effectuée sur les 5 triangles rouges, connexes aux triangles jaunes, termine la construction de l'icosaèdre. Le patron présenté ici est un exemple, il en existe bien d'autres. On en trouve 43.380.

Propriétés

Un icosaèdre comporte 20 faces. Il possède 12 sommets, 1 en bas, 5 à la base inférieure des dents décrites dans la première construction et autant pour le bol supérieur. Il possède 30 arêtes, chacun des 12 sommets possède 5 arêtes, soit 60, mais comme une arête contient 2 sommets, il faut diviser 60 par 2 pour obtenir le bon résultat.

Sommets, arêtes et faces —  Un icosaèdre régulier convexe contient 12 sommets, 30 arêtes et 20 faces.

Il existe une sphère (En mathématiques, et plus précisément en géométrie euclidienne, une sphère est une surface constituée de tous les points situés à une...) de centre celui de l'icosaèdre, contenant tous les sommets du polyèdre.
Le cube (En géométrie euclidienne, un cube est un prisme dont toutes les faces sont carrées. Les cubes figurent parmi les solides les plus remarquables de...) circonscrit de l'icosaèdre contient tous les sommets du polyèdre.

Les plus grands segments inclus dans le polyèdres ont tous pour extrémités deux sommets du polyèdre. Il en existe 6 et l'intersection de ces 6 segments est un point, appelé centre du polyèdre. Ce point est aussi le centre de gravité (Le centre de gravité est le point d'application de la résultante des forces de gravité ou de pesanteur. Il est également le point d'intersection de tous les plans qui divisent le corps en deux parties de poids égal. De ce...) du solide. Il existe 10 segments d'extrémités deux points de la surface du polyèdre, passant par le centre et de longueur minimale. Les extrémités sont les centres de deux faces opposées, elles sont parallèles entre elles. Ces remarques géométriques permettent de qualifier la sphère circonscrite et celle inscrite du solide. La sphère circonscrite est celle de plus petit rayon dont l'intérieur contient l'intérieur du polyèdre. Cette définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) généralise celle de cercle (Un cercle est une courbe plane fermée constituée des points situés à égale distance d'un point nommé centre. La valeur de cette distance...) circonscrit. On peut de même parler de sphère inscrite pour désigner celle de plus grand rayon dont l'intérieur est inclus dans l'intérieur du solide, généralisant ainsi la définition de cercle inscrit.

Sphère circonscrite et inscrite —  La plus petite sphère dont l'intérieur contient l'intérieur de l'icosaèdre est de même centre que le solide, elle contient tous les sommets du polyèdre. La plus grande sphère contenue dans l'icosaèdre est aussi de même centre que le solide, elle contient le centre de chaque face du polyèdre.

Une analyse rapide pourrait laisser penser qu'il existe un cercle contenant 6 des sommets du polyèdre, il n'en est rien. Un cercle contient un maximum de 5 sommets. Cette erreur est, par exemple, commise par Albrecht Dürer (Albrecht Dürer, (« Albert » la version traduite de son prénom est aussi d'usage pour les francophones), né le 21 mai 1471 et mort en 1528 à Nuremberg est un peintre, graveur et...), un peintre du XVIe siècle. En revanche, Dürer ne commet pas d'erreur quand il affirme que :

Cube circonscrit —  Le plus petit cube contenant l'icosaèdre est de même centre que le solide, sa surface contient tous les sommets du polyèdre.

Cette propriété est illustrée sur la figure de droite. Chacune des faces du cube contient deux sommets et une arête du polyèdre. Le cube contient 6 faces, donc les 12 sommets.

La structure de ce polyèdre est régulière. Les arêtes possèdent toutes la même longueur, deux arêtes d'une même face et possédant un sommet commun forment toujours le même angle (En géométrie, la notion générale d'angle se décline en plusieurs concepts apparentés.), égal à 60 degré ou encore à π/3, si la mesure de l'angle est le radian (Le radian (symbole : rad) est l'unité dérivée d'angle plan du système international (SI).). Le nombre d'arêtes partageant un même sommet est une constante qui ne dépend pas du sommet choisi. On parle de polyèdre régulier. Un segment ayant ses deux extrémités à l'intérieur du solide est intégralement à l'intérieur du solide, on dit que l'icosaèdre est convexe. Une autre manière de voir les choses est de remarquer qu'un élastique qui entoure le solide le touche en chaque point. Ces deux manières de voir sont équivalentes. Les polyèdres réguliers ne sont pas toujours convexes, un contre exemple est donné à la suite de l'article. Les polyèdres réguliers convexes sont appelés solide de Platon.

Solide de Platon —  Il existe un icosaèdre, c'est-à-dire un polyèdre à 20 faces, qui est à la fois régulier et convexe. On dit que ce volume (Le volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace.) est un solide de Platon.

Rotation et symétrie

Une rotation laisse globalement invariant l'icosaèdre, lorsque l'image du solide par la rotation occupe exactement la même position que celle initiale. Les sommets, les arêtes et les faces sont peut-être permutés, mais la position globale est inchangée.

Rotations de l'icosaèdre —  Il existe 60 rotations laissant globalement invariant l'icosaèdre : la rotation d'angle nul, 15 rotations d'un demi-tour, 20 rotations d'un tiers de tour et 24 rotations d'un angle multiple d'un cinquième de tour.

Rotation d'un demi-tour des sommets de l'icosaèdre

Dans le cas d'un solide de Platon, une rotation qui laisse globalement invariant l'icosaèdre possède un axe qui traverse (Une traverse est un élément fondamental de la voie ferrée. C'est une pièce posée en travers de la voie, sous les rails, pour en maintenir l'écartement et l'inclinaison, et transmettre au ballast les...) nécessairement le centre du solide et qui passe, soit par un sommet, soit par le milieu d'une arête, soit par le milieu d'une face.

Étudions, dans un premier temps (Le temps est un concept développé par l'être humain pour appréhender le changement dans le monde.), les rotations dont l'axe contient le centre d'une arête. Pour comprendre leur nature, le plus simple est de regrouper les points dans des plans perpendiculaires à l'axe de la rotation. Ce regroupement est effectué sur la figure de droite. Il met en évidence cinq ensembles. Les deux extrêmes, en bleu, sont composés de deux points formant les arrêtes qui délimitent le solide et qui croisent en leur milieu l'axe étudié. On trouve ensuite deux ensembles de deux points, illustré en rouge sur la figure, qui se trouvent sur deux droites perpendiculaires à la fois aux segments bleus et à l'axe de rotation. Enfin, au milieu du polyèdre, on trouve 4 points formant un rectangle (En géométrie, un rectangle est un quadrilatère dont les quatre angles sont des angles droits.). Ces 5 figures sont invariantes par une rotation d'un demi-tour. On en déduit l'existence d'une rotation d'un demi-tour pour chaque couple d'arêtes situées aux antipodes l'une de l'autre. Comme il existe 30 arêtes, on a 15 rotations d'un demi-tour. Aucune autre rotation autour (Autour est le nom que la nomenclature aviaire en langue française (mise à jour) donne à 31 espèces d'oiseaux qui, soit appartiennent au genre Accipiter, soit constituent les 5 genres Erythrotriorchis,...) de l'axe ne laisse invariant le solide, à l'exception de la rotation identité. En effet, les autres rotations ne laissent pas invariant un segment perpendiculaire (En géométrie plane, on dit que deux droites sont perpendiculaires quand elles se coupent en formant un angle droit. Le terme de perpendiculaire vient du latin per-pendiculum (fil à plomb) et justifie la généralisation de la...) à l'axe de rotation et non réduit à un point.

Rotation d'un tiers de tour des sommets de l'icosaèdre

Il existe deux autres axes de rotations, qui forment avec le premier, 3 axes dont les rotations d'un demi-tour laissent globalement invariant l'icosaèdre. Ces trois axes sont perpendiculaires entre eux, les rotations commutent entre elles.

La figure de gauche illustre le cas d'un axe passant par le centre du solide et qui traverse la surface du polyèdre par le centre de deux faces opposées. La même technique que celle utilisée précédemment regroupe cette fois ci les sommets en quatre ensembles. Par construction, les deux ensembles extrêmes sont des faces. Ce sont des triangles équilatéraux de même dimension et pivotés de demi-tour, l'un par rapport à l'autre. Les deux ensembles centraux, en violet (Le violet est une couleur, composée d'un mélange de bleu (environ 50% de luminosité) et de rouge (environ 25% de luminosité) en synthèse additive, et d'un mélange de magenta (environ 100%) et de cyan (environ 50%) en synthèse...) sur la figure, sont aussi des triangles équilatéraux, de dimensions plus grandes. Une rotation d'un demi-tour est nécessaire pour faire coïncider deux triangles situés l'un à côté de l'autre. L'axe étudié traverse chacun des 4 triangles en son centre, on en déduit qu'à l'exception de la rotation d'un angle nul, seul les rotations d'un tiers de tour, dans un sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine....) ou dans un autre laissent les sommets invariants.

Rotations d'un multiple d'un cinquième de tour des sommets de l'icosaèdre

Il existe 2 rotations d'un tiers de tour par couple de faces. Le solide contient 20 faces, on en déduit qu'il existe 20 rotations de cette nature.

La figure en bas à droite du paragraphe illustre le cas d'un axe passant par le centre du solide et qui traverse la surface du polyèdre par deux sommets opposés. Les sommets sont encore regroupés en 4 ensembles. Les deux extrêmes sont composés d'un unique point, les deux ensembles les plus proches du centre forment chacun un pentagone régulier. Ils sont de même dimension et sont encore décalés d'un demi tour. Les seules rotations qui laissent globalement invariant un pentagone sont celles d'un angle multiple d'un cinquième de tour.

Il existe 4 rotations d'axes passant par deux sommets, laissant globalement invariant le solide, si l'on néglige la rotation d'angle nul. Il existe 12 sommets et 6 axes contenant deux sommets opposés, soit 24 rotations de cette nature.

Une fois déterminée les rotations, il devient simple de trouver les autres isométries, c'est-à-dire celles correspondant à des réflexions ou à une symétrie centrale. On les appelle parfois symétrie impropre, en opposition à symétrie propre qui ne désigne que les rotations. Une symétrie impropre est une isométrie (En géométrie, une isométrie est une transformation qui conserve les longueurs. Une isométrie est donc un cas particulier de similitude.) qui n'est pas une rotation, ou encore dont le déterminant est égal à -1. La composée de deux symétries impropres est une rotation.

La première symétrie impropre à laquelle on peut penser est la symétrie centrale γ de centre celui du polyèdre. Les différentes illustrations précédentes montrent toutes qu'elle laisse globalement invariant le solide. Si σ est une symétrie impropre quelconque, sa composée avec γ est une rotation, notée ici ρ. L'isométrie γ est involutive, c'est-à-dire qu'appliquer deux fois γ revient à ne pas bouger le solide. On en déduit que σ est la composée d'une des rotations déjà explicitée avec γ. Si ρ1 et ρ2 sont deux rotations différentes, alors γ.ρ1 et γ.ρ2 sont deux symétries différentes. Pour s'en rendre compte, il suffit que composer ces deux symétries par γ, on obtient les deux rotations ρ1 et ρ2 car γ est involutive. Si les deux symétries étaient identiques, leurs composées le seraient aussi, comme ce n'est pas le cas, on en déduit qu'elles sont différentes. Il existe exactement 60 symétries impropres.

La composée d'une symétrie centrale par une rotation d'un angle non nul et dont l'axe contient le centre de symétrie est une réflexion. On en déduit que l'ensemble des symétries impropre est composée d'une symétrie centrale γ et de 59 réflexions.

Symétries impropres de l'icosaèdre —  Il existe 60 symétries impropres laissant globalement invariant l'icosaèdre : la symétrie centrale de centre celui du solide et 59 réflexions, toutes ayant leur plan de symétrie contenant le centre du solide.

Figures remarquables de l'icosaèdre

Les polygones associés au nombre d'or sont présent dans l'icosaèdre.

Les symétries d'ordre 3 et 5 introduisent les figures géométriques (Les figures géométriques sont un mode d'expression décoratif développé par les civilisations anciennes, basé sur la répétition de figures et motifs suivant un tracé géométrique propre à une iconographie identitaire.) planes associées à ces symétries.

Une symétrie plane (La plane est un outil pour le travail du bois. Elle est composée d'une lame semblable à celle d'un couteau, munie de deux poignées, à chaque extrémité de la lame. Elle permet le...) d'ordre 3 a pour groupe de symétrie le triangle équilatéral (cf Réseau (géométrie)). Il est naturel d'en trouver la trace (TRACE est un télescope spatial de la NASA conçu pour étudier la connexion entre le champ magnétique à petite échelle du Soleil et la géométrie du plasma coronal, à...) dans l'icosaèdre. Il est possible de construire de tels triangles avec les différents sommets du solide. Chaque axe passant par le centre de deux faces opposées traverse en leurs centres 4 triangles équilatéraux. Deux de ces triangles sont des faces. Les deux autres, représentés en violet sur la figure du paragraphe précédent, ont un côté en proportion d'extrême et moyenne (La moyenne est une mesure statistique caractérisant les éléments d'un ensemble de quantités : elle exprime la grandeur qu'auraient chacun des membres de l'ensemble s'ils...) raison par rapport à une arête du polyèdre. Ceci signifie que le côté d'un rectangle violet, divisé par la longueur d'une arête est égal au nombre d'or.

Pour chaque paire (On dit qu'un ensemble E est une paire lorsqu'il est formé de deux éléments distincts a et b, et il s'écrit alors :) de faces, on trouve 2 petits triangles équilatéraux et 2 grands, soit un total ( Total est la qualité de ce qui est complet, sans exception. D'un point de vue comptable, un total est le résultat d'une addition, c'est-à-dire une somme. Exemple : "Le total des dettes". En physique le total...) de 12 petits triangles équilatéraux et autant de grands.

La présence du nombre d'or n'est guère surprenante, elle intervient dans l'expression d'une rotation d'ordre 5 et par conséquent dans les rapports de dimensions d'un pentagone. Parallèlement à chaque axe passant par deux sommets opposés, on trouve deux pentagones dont le plan est orthogonal à l'axe. Chaque sommet du pentagone est aussi un sommet de deux triangles d'or de géométries différentes. Un triangle est dit d'or quand il est isocèle et que le grand et le petit côté sont en proportion d'extrême et de moyenne raison. Il en existe deux types différents, ceux ayant deux grands côtés, en gris sur la figure de droite et ceux ayant deux petits côtés, en jaune. Chaque sommet d'un pentagone est le sommet adjacent à deux côtés égaux d'un triangle d'or de chaque type. La figure contient 2 pentagones, soit 10 sommets et 20 triangles d'or. Il existe 6 axes différents passant par deux sommets opposés, soit 120 triangles d'or.

On trouve aussi des rectangles d'or, c'est-à-dire des rectangles dont la longueur et la largeur (La largeur d’un objet représente sa dimension perpendiculaire à sa longueur, soit la mesure la plus étroite de sa face. En géométrie plane, la largeur est la plus petite des deux mesures d'un rectangle, l'autre...) ont un rapport égal au nombre d'or. On en trouve exactement 1 par côté du pentagone, le deuxième côté se situe alors sur l'autre pentagone. Un exemple est illustré en vert (Le vert est une couleur complémentaire correspondant à la lumière qui a une longueur d'onde comprise entre 490 et 570 nm. L'œil humain possède un récepteur, appelé...) sur la figure de droite. Comme il existe 5 paires d'arêtes de cette nature pour chaque couple de pentagones, on trouve 30 rectangles d'or.

Polyèdre dual

Le polyèdre dual d'un dodécaèdre est un icosaèdre.

A l'aide d'un polyèdre régulier, il est possible d'en construire un nouveau, de sommets les centres des faces du solide initial. Le dual d'un solide de Platon est encore un solide de Platon.

Dans le cas d'un icosaèdre, le dual possède 20 sommets et chaque face est un pentagone régulier car chaque sommet est partagé par 5 arêtes. Le polyèdre obtenu est un dodécaèdre régulier convexe, un solide composé de 12 faces pentagonales. Réciproquement, le dual d'un dodécaèdre, solide de Platon, est un polyèdre régulier convexe à 12 sommets. Comme chaque sommet du dodécaèdre est partagé par 3 arêtes, les faces de son dual sont des triangles équilatéraux. On reconnaît l'icosaèdre. Cette propriété est générale aux polyèdres, le dual du dual d'un polyèdre est une homothétie (Une homothétie est une transformation géométrique, c'est-à-dire une règle qui associe à chaque point d’un espace un point de ce même espace. On dit aussi que c'est une application mathématique...) du solide initial.

Une symétrie qui laisse globalement invariant l'icosaèdre laisse aussi invariant l'ensemble des milieux de ses faces. On en déduit que toute symétrie de l'icosaèdre est aussi une symétrie du dodécaèdre. Réciproquement, le même raisonnement montre que toute symétrie du dodécaèdre est aussi une symétrie de l'icosaèdre. Les deux ensembles d'isométries, associés aux deux polyèdre duaux sont les mêmes. Ici, le terme de symétrie est utilisé au sens d'isométrie.

Grandeur caractéristique

Le tableau (Tableau peut avoir plusieurs sens suivant le contexte employé :) suivant présente les différentes grandeurs caractéristiques de l'icosaèdre régulier convexe :

Dimensions d'un icosaèdre dont la longueur de l'arête est a
Angle diédral \alpha \,=\, \pi-\arcsin\left(\frac 23\right)\, rad \approx 138^{\circ}11'23''
Rayon de la sphère circonscrite r_{ext} \, = \, \frac{a}{2} \sqrt{2+\varphi} = \,\frac{a}{2} \sqrt{\varphi \sqrt 5}  \approx 0{,}95 \, a
Rayon de la sphère inscrite r_{int} \, = \, \frac{a}{6} \sqrt{3}(1 + \varphi)  \approx 0{,}76 \, a
Arête du cube circonscrit c \, = \, a\varphi \approx 1{,}62 \, a
Hauteur (La hauteur a plusieurs significations suivant le domaine abordé.) de l'icosaèdre
(distance entre deux faces opposées)
h\, = 2 r_{int} \, = \, \frac{a}{3} \sqrt{3}(1 + \varphi)  \approx 1{,}51 \, a
Volume V \, = \, \frac{5(1 + \varphi)}{6}  a^3 \approx 2{,}18 \, a^3
Fraction de sphère circonscrite occupée  \frac{V} {V_{s}}\, = \,\frac{\sqrt{2 + \varphi}}{\pi}\approx 0{,}61
Surface A\, = \, 5 \sqrt{3} a^2 \approx 8{,}66 \, a^2
Quotient isopérimétrique 36\pi \frac{V^2}{A^3} = \, \frac{\varphi^4 \pi}{15\sqrt 3} \approx 0{,}83

L'angle diédral est l'angle entre deux plans contenant chacun une face de l'icosaèdre. Les deux faces partagent un même sommet.

Page générée en 0.186 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique