Les métiers de ce siècle (teinturiers, apothicaires, mineurs, métallurgistes, distillateurs, ingénieurs militaires…) sont représentatifs de l'esprit scientifique de l'époque. Il n'y a pas de percée théorique en chimie (contrairement à la physique : Descartes, Newton, Leibniz), malgré le grand nombre d'ouvrages scientifiques (voir par exemple Johannes Hartmann), d'expériences et de découvertes qui se succèdent. L'alchimie en déclin laisse place à la théorie du phlogistique et à la chimie pneumatique.
Pierre Gassendi (1592 - 1655) reprend en 1624 les théories atomiques de l'Antiquité et précise la notion d'atome et en 1620, Francis Bacon, qui publie Novum Organum, prend parti pour l'atomisme. Georg Ernst Stahl (1659 - 1734) crée la phlogistique (du grec phlogiston, la terre inflammable). Selon cette théorie, toute matière combustible contient du phlogiston (du feu), qui s'échappe lorsqu'elle brûle. En 1630, Jean Rey (1583 – 1645), médecin, constate avant l'heure, qu'un métal chauffé à l'air forme une chaux (oxyde) plus lourde que le métal, ce qui pose question dans le cadre de la phlogistique. Vers 1680, Johann Joachim Becher (1635 - 1682) écrit que les corps combustibles et les métaux sont composés de terres vitrifiables, inflammables (qui se dégagent par combustion) et mercurielles. Newton, qui est alchimiste en plus d'être physicien, pense qu'il existe des forces entre les particules, comparables aux forces de gravitation. En recherchant la pierre philosophale, Hennig Brandt obtiendra en 1669 le phosphore par distillation de l'urine humaine.
Jan Baptist van Helmont (1577 - 1644) différencie les gaz et caractérise le gaz sylvestre (CO2). C'est à l'issue d'expériences, et non d'intuitions, qu'il énonce ses résultats. Il obtient, par exemple, le gaz sulfureum par combustion du soufre et constate qu'il forme avec l'eau l'oléum sulphuris. Par ailleurs, on sait à l'époque que le gaz sylvestre peut être obtenu par diverses méthodes: action du vinaigre sur le calcaire, combustion du charbon, fermentation du raisin… En ce qui concerne le vinaigre, Johann Rudolf Glauber découvre que le vinaigre de vin et le vinaigre de bois sont de même nature. Il fonde, en 1650 à Amsterdam, une usine chimique de savon et de verre. Après la mise au point du verre de cristal au plomb en 1676, l'art de la verrerie est étudié par Johannes Kunchel en 1689 et Jean Haudicquer de Blancourt en 1697. En 1662, Robert Boyle (1627 - 1691) établit la loi des gaz à température constante et publie The Sceptical Chymist et Edme Mariotte fait paraître en 1679 son essai sur l'air et complète la loi des gaz de Boyle.
En 1675, Nicolas Lémery publie le premier grand traité de chimie. La nature est divisée en minéraux, végétaux et animaux. La théorie des sept métaux et l'absence de symboles fait apparaître la chymie plus comme un art que comme une science. Il introduit la notion de mixte (mélange) et de corps dont les éléments ne peuvent être chimiquement séparés. Il définit les acides (huile de vitriol, eau régale, eau forte), les vitriols, les alcalis (bases) et les sels.
C'est au cours de ce siècle, que la chimie prend véritablement son essor : théorie atomique de Dalton, lois sur les gaz, hypothèse d'Avogadro, calcul des poids atomiques, naissance de la chimie organique, théorie de la valence, chimie structurale et classement des éléments par Mendeleïev et classification périodique des éléments. A la fin du siècle, physique et chimie contribuerontà la découverte de la radioactivité.
C’est en 1800 qu’Alessandro Volta invente la pile électrique. Le cérium est découvert par Wilhelm Hisinger en 1803. En 1804, l’iridium et l’osmium sont découverts par Smithson Tennant et la même année, William Wollaston isole le palladium et le rhodium. Les lois de l’électrolyse, approfondies par William Nicholson et Anthony Carlisle, vont mettre en évidence la dissociation d’une solution aqueuse acide ou basique sous l’action de l’électricité. On obtient deux gaz : un volume d’hydrogène et deux volumes d’oxygène. Ces résultats donnent l’idée à Humphrey Davy de soumettre à l’électrolyse, non plus des solutions, mais des corps fondus comme la potasse. Il constate la formation d’un métal : potassium ou sodium autour d’un des fils. Avec la même méthode il isolera, en 1808, les métaux terreux : le magnésium, le calcium, le strontium et le baryum. En 1810, il montre que l’acide marin déphlogistiqué, ou oxyde muriatique, est un corps simple : le chlore. L’acide muriatique est l’acide chlorhydrique. En 1834, Michael Faraday énonce les lois quantitatives de l’électrolyse. Svante August Arrhenius propose, en 1883, une théorie de l’électrolyse pour interpréter la loi de Faraday, basée sur l’existence de charges atomiques élémentaires ions.
Berzelius la définit en 1808, comme la chimie des êtres vivants, définition imprégnée de vitalisme. Au départ, c’est la chimie des dérivés du carbone connus et des substances contenues dans le gaz d’éclairage. William Murdoch avait mis au point l’éclairage au gaz de houille en 1792 et 1799. L’éclairage au gaz de bois (thermolampe) avait été breveté par Philippe Lebon . Le développement urbain de ces nouvelles techniques avait conduit à la conception d’usines à gaz, de moyens de stockage et de tuyaux d’acheminement pour la distribution. Le goudron est un sous produit du gaz d’éclairage qui empêche la putréfaction du bois et qui est utilisé pour le calfatage des coques de bateau en bois. Il se présente sous forme d’un liquide visqueux, noir à forte odeur caractéristique. A l’époque, il existe d’autres substances organiques : teinture, savon,tannage… En 1802, Fourcroy et Vauquelin établissent que l’acide formique est un mélange d’acide malique et d’acide acétique (dont Berzelius établira la formule en 1814). En 1805, Friedrich Sertürmer isole la morphine, puis en 1817 Joseph Pelletier l’émétique. Ces découvertes de produits alcaloïdes seront suivies l’année suivante par la brucine, le strychnine, la colchinine, substances découvertes par Joseph Caventou et Pelletier qui isoleront, en 1820, la quinine et la caféine. En 1823, Jean Antoine Chaptal fera paraître son ouvrage Chimie appliquée à l’agriculture. Faraday découvre le carbureted hydrogen (C6H6) dans le gaz d’éclairage en 1825. En 1826, Otto Undervorben isole la crystallin de l’indigo par distillation et Gay-Lussac extrait l’acide racémique du tartre.
L’année 1828 est importante : Pelletier et Cavendou isolent la nicotine et Friedrich Wohler réalise la synthèse de l’urée. Il démontre la possibilité d’obtenir des substances organiques (urée) à partir des substances minérales (cyanate d’argent et chlorure d’ammonium). La saliciline est extraite de l’écorce de saule par Pierre Joseph Leroux en 1829 (le lancement commercial de l’aspirine par Bayer aura lieu en 1899. En 1833, Jean-Baptiste Dumas établit la formule du camphre.
Chevreul s’intéresse vers 1810 aux matières grasses utilisées dans l’industrie : savonneries, alimentation, éclairage, textile (ensimage). En 1813, il montre que l’action d’un alcali sur la graisse de porc forme un savon et libère de la glycérine. Il montre , la même année, en faisant agir de l’acide sulfurique dilué sur le savon, que celui-ci est formé de deux acides : l’un solide (margarine), l’autre liquide (graisse fluide). La graisse de porc est donc constituée de glycérine, margarine et graisse fluide. En 1814, il extrait du beurre l’acide butyrique et des calculs biliaires, la choléstérine. Les acides stéarique et oléique sont des sels qui sont dissociés par les alcalis en glycérine et acide et qui se recombinent au métal de l’alcali. Les sels d’acides gras sont obtenus à partir de la potasse et donnent des savons mous, alors que ceux obtenus à partir de la soude donnent des savons durs. En 1817, Chevreul étudie l’acide delphique. Les acides caprique et caproïques seront caractérisés l’année suivante. En faisant bouillir des os d’animaux, Braconnot obtient en 1820, par l’action de l’acide sulfurique dilué sur le gélatine un ‘sucre de gélatine’. Dans son ouvrage, paru en 1823, Recherches chimiques sur les corps gras d’origine animale Michel Chevreul effectue un classement des corps gras rencontrés dans ses travaux. Les glycérides comme la stéarine (glycérine et acide stéarique) résulteront des combinaisons de glycérine et d’acides gras. La rupture du lien entre glycérine et acides gras par l’action de la soude (hydroxyde de sodium) sera appelée saponification. Tous les corps gras ne sont pas saponifiables. À la suite de tous ces travaux, dès 1825, les bougies en stéarine remplaceront les chandelles en suif d’animal.
Peser des quantités de produits implique l’utilisation de la balance. Les travaux de Richter sur la stœchiométrie en 1792 et la loi des proportions définies (1802) reposent sur des pesées entachées d’incertitudes de précision :dans un corps composé, la teneur en divers éléments est constante.. John Dalton, en 1804, effectue l’analyse quantitative du gaz des marais et du gaz oléfiant qui sont tous deux des composés binaires à base d’hydrogène et de carbone. Il énonce la loi des proportions multiples : lorsque des composés différents sont formés des mêmes éléments, les proportions de ceux-ci sont dans un rapport simple. Cette loi sera complétée en 1805 par la loi de Gay-Lussac sur les gaz.
La théorie atomique, exposée par Dalton en 1803 dans A new system of chemical philosophy, suppose que les atomes possèdent une masse bien déterminée appelée masse atomique que Dalton calcule pour certains composés. Elle explique particulièrement bien les lois ci-dessus et la loi de conservation de la masse. Elle aura ses partisans et ses adversaires (Berthollet). Un système de symboles viendra compléter cet exposé : le symbole représente un atome, un élément doté d’une masse. La molécule est représentée par l’association des symboles d’atomes consécutifs. Le poids atomique sera différent d’un chimiste à l’autre (7,8,10 par exemple pour l’oxygène). C’est en 1811 qu’Amedeo Avogadro publie sa théorie du Nombre d'Avogadro : un litre de gaz soit 1/22,4 mole contient toujours le même nombre N de particules (atomes pour un corps simple, molécules pour un corps composé). C’est Joseph Loschmidt qui, en 1865, tentera le premier une évaluation de N proche de 4.1023. En 1873, Johannes Van der Waals trouvera N = 6,2.1023. En 1814, Berzelius utilisera les symboles de Dalton et établira des équivalences entre atomes. Il utilisera des lettres comme symboles : P (phosphore), S (sulphur)… et mettra le nombre d’équivalents d’une molécule en notation exposant. Les formules étaient écrites de la façon suivante : CaCO3 : CaO, CO2 / CuSO4 : CuO, SO3. Dans ce système dualiste, la première partie est basique : CaO, CuO sont des oxydes de métaux, le seconde partie est acide : CO2, SO3 sont des oxydes de non métaux. Lors du premier congrès international de la chimie qui se déroulera à Karlsruhe en 1860, Cannizzaro exposera les concepts d’atomes et molécules admis par la plupart des chimistes. Berthelot, cependant, s’opposera au réalisme atomique.
Scheele établit la formule de l’acide tartrique (C2H3O3) en 1830. Celle de l’acide racémique découverte par Gay-Lussac est la même. Ces deux acides, que l’on trouve dans le tartre, ont des points de fusion différents. Berzelius nomme ces corps des isomères. En 1832, Justus von Liebig établit que l’acide lactique en provenance du lait ou de la viande a la même formule CH2O .En 1833, Jean-Baptiste Dumas précise la formule du camphre (C10H16O) et Christopher Zeise celle du mercaptan C2H6S. La même année, Eilhard Mitscherlich obtient le benzène en chauffant l’acide benzoïque qui peut être obtenu à partir de la houille. En 1834, Jean-Baptiste Dumas, en faisant agir l’acide acétique sur le chlore, met en évidence la substitution partielle de l’hydrogène par le chlore en acide chloracétique. Il établit la formule du chloroforme, obtenu par Liebig et Carl Runge. En 1835, Justus von Liebig et Dumas caractérisent les groupes éthyle et méthyle. En 1836, Berzelius définit la catalyse. L’aniline, préparée par Carl Fristsche par distillation de l’indigo, permet l'élaboration de la mauvéine, suivra la synthèse de la quinine pour l'indigo. En 1842, John Leigh produit le nitrobenzène qui redonne l’aniline par l'action du sulfure d’ammonium. En 1843, Charles Frédéric Gerhardt obtient le bornéol à partir du camphre.
Les séries homologues, les groupes fonctionnels seront définies entre 1842 et 1850 par Auguste Laurent, la chiralité en 1848 (Louis Pasteur). En 1855, Charles Adolphe Wurtz mettra au point sa célèbre synthèse, (réaction de Wurtz) pour la préparation des hydrocarbures. La synthèse de l’acide formique sera réalisée par Marcellin Berthelot en 1856. Celle de l’acide salicylique, par Hermann Kolbe en 1859 à partir du phénate de sodium obtenu par l’action du phénol sur la soude. En 1864, la synthèse de Rudolf Fittig et Tollens aboutit au toluène. En 1894, Henri Moissan obtient de l’acétylène à partir du carbure de calcium. En 1884, le comte Hilaire de Chardonnet invente la soie artificielle et construisit en 1891 une usine affectée à la production de Viscose.
La notion de chaîne carbonée est introduite par Kékulé] en 1857 pour définir les enchaînements d’atomes de carbone dans une molécule. La représentation de lien interatomique par un tiret est due à Archibald Couper. Cette représentation, contrairement à la formule brute, conduit aux formules développées et permet de préciser la disposition des atomes dans les molécules et la compréhension des mécanismes réactionnels. En 1860 , Kékulé différencie les corps gras aliphatiques et les composés aromatiques tels les acides salicylique et benzoïques. La notion de liaison multiple], due ) à Joseph Loschmidt (1863), permet d’expliquer l’hydrogénation. L’hydrogénation catalytique sera développée en 1897 par Paul Sabatier et Senderens. En 1864, August Wilhelm von Hofmann suggère une nomenclature pour alcanes et alcènes.
C’est en 1865, que Kékulé propose la formule cyclique du benzène. La tétravalence du carbone est un des principes fondamentaux de la chimie organique. Cette formule sera revue en 1872 par l’introduction de liaisons transitoires dans le cycle benzénique. L’isomérie géométrique, définie en 1863, est étudiée par Joseph Achille Le Bel au cours de travaux sur l’acide lactique. Il propose une représentation spatiale des formules des formes lévogyre et dextrogyre. Jacobus Henricus van 't Hoff complètera ces travaux par la notion de carbone tétraédrique. En 1888, Adolf von Baeyer explique l’isomérie des acides malique et fumarique (qui possèdent des points de fusion différents), par l’isomérie cis-trans. La stéréochimie, terme de (Victor Meyer), constitue la façon de représenter ces différents isomères.
La chimie non organique progresse et, dès 1810, Berzelius isole le silicium de la silice qui forme le quartz, sable que l’on trouve dans l’argile et dans de nombreuses roches. En 1824, le ciment Portland complètera le ciment hydraulique de John Smeaton mis au point en 1715 à base de chaux. En 1808, Gay-Lussac et Louis Jacques Thénard découvrent le bore. En 1813, Bernard Courtois caractérise l’iode qui sera extraite du varech par Antoine-Jérôme Balard en 1826. En 1817, Friedrich Stromey découvre le lithium. En 1828, le glucinium (renommé ultérieurement béryllium) est découvert par Friedrich Wöhler et le thorium par Berzelius. Carl Gustav Mosander isole le lanthane en 1839 et l’erbium et le terbium en 1843. Entre-temps, (1841) le chimiste français Eugène-Melchior Péligot nomme l'uranium, promis au fabuleux destin de la découverte de la radio-activité. Puis en 1845, le ruthénium est découvert par Karl Karlovich Klaus.
Une nouvelle technique, l'analyse spectrale, verra le jour en 1859, mise au point par Robert Bunsen et Gustav Kirchhoff qui caractériseront le césium et le rubidium en 1860. Le thallium sera identifié par William Hookes en 1861, en utilisant la même méthode. C’est en 1869 que Mendeleïev classe les 62 éléments connus dans un tableau, tentative effectuée en 1829 par Johann Wolfgang Döbereiner. La découverte d’autres éléments continue : en 1875, Lecoq de Boisbaudran découvre le gallium, puis l’holmium et l’ytterbium en 1878. En 1879, d’autres terres rares seront répertoriées : le scandium , le samarium, le thullium, puis le gaddilium en 1880. En 1886, Lecoq de Boisbaudran isole le dysprosium et Henri Moissan le fluor. La même année, Clemens Winkler découvre le germanium. A la fin du siècle, Ramsay découvrira l’argon (1894) et l’hélium (1895) et enfin la découverte des autres gaz rares (néon, krypton et xénon).
La synthèse chimique va surtout se développer dans les domaines des médicaments et des colorants. En 1807, Jean-Antoine Chaptal publie l’Art de la teinture du coton rouge. En 1838, Alexandre Wosrerenski obtient la quinone à partir de la quinine. Dès 1842, l’acide picrique est utilisé dans l’industrie comme colorant synthétique. En 1849, l’essence de térébenthine est à la base du ‘nettoyage à sec. La pyridine est obtenue par distillation du goudron de houille par (Thomas Anderson). William Henry Perkin réussit à obtenir du pourpre d’aniline ou mauvéine en traitant l’aniline par le bichromate de potassium. Le rouge d’aniline ou fuschine sera fabriqué un peu plus tard. La société Bayer sera créée en Allemagne en 1863, puis la BASF en 1865. En 1867, la formule du naphtalène extrait du goudron de houille est établie. La synthèse de l’alizarine (1868) sera industrialisée par BASF en 1870 par Carl Graebe est réussie en 1875 par Friedrich Tiemann. La théorie des colorants avec les groupements chromophores et auxochromes sera l’œuvre, en 1876, de Otto Nikolaus Witt. En 1875, Ramsay réalise la synthèse de la pyridine. Enfin, Adolf von Baeyer met au point la synthèse de l’indigo en 1879 que BASF commercialise en 1897.
En ce qui concerne le caoutchouc, l’invention du pneumatique en 1888 (Dunlop) débouchera vers une fabrication industrielle par Michelin en 1889 puis Goodyear.
Un nouveau métal, l’aluminium est découvert par Wöhler en 1827. Les mécanismes et réactions survenant dans un haut-fourneau pour produire de l’acier sont de mieux en mieux comprises : carburation, affinage. En 1826, Henry Bessemer invente un nouveau convertisseur qui sera complété en 1878 par un nouveau procédé de production (acier Thomas). C’est à cette époque que les aciers spéciaux au manganèse sont mis au point par Robert Hadfield. En 1863, l’étude de la trempe conduit à la métallographie et à la caractérisation de cémentite et de ferrite. La structure de la martensite des aciers trempés par Floris Osmond sera étudiée en 1890.
En 1860, l’invention du pyromètre à thermocouple par Henri Le Chatelier permettra la mesure de températures élevées. Il faudra attendre 1886 pour que Paul Héroult produise l’aluminium par électrolyse.
La nature des rayonnements cathodiques dans un tube de Hittorf est approfondie par William Crookes en 1886. Ce sont des rayons de nature corpusculaire appelés électrons, dès 1891, par George Stoney et reconnus expérimentalement comme tels par Jean Perrin en 1895. Ces rayons cathodiques sont constitués de particules négatives électrisées pouvant se mouvoir dans le vide et subissant l’action des champs électriques et magnétiques. Joseph John Thomson parvient, par des mesures de déviations de trajectoire, à déterminer le rapport entre la charge électrique e de l’électron (1,602.10-19 C). et sa masse m (9,109.10-31 kg) qui représente environ 1/2000 ième de celle de l’atome d’hydrogène. Ces découvertes et mesures, plutôt du domaine de la physique, conduiront au modèle d’atome de Thomson et effaceront les doutes sur l’existence des atomes formulés au premier Congrès des chimistes de 1860.
Vers les années 1890, on remarque que des rayons cathodiques frappant le verre d’une ampoule provoquent une fluorescence du verre. Wilhelm Röntgen constate, en 1895, en plus de la fluorescence observée, la présence d’un nouveau rayonnement invisible , énergétique et pénétrant, capable d’impressionner une plaque photographique entourée de papier noir. Ces mystérieux rayons X seront utilisés en radiographie car ils traversent la sulfate double d’uranium et de potassium émettent un rayonnement semblable aux rayons X : les atomes d’uranium, quel que soit le composé dans lequel il se trouvent, émettent des ‘rayons uraniques’, phénomène différent de la fluorescence provoquée par les rayons X.
Cette activité particulière des atomes d’uranium, émission continue d’énergie, est appelée ‘radioactivité’ par Pierre Curie et Marie Curie en 1898, après mesure de l’ionisation produite par les rayons uraniques au moyen d’un électroscope. C’est à l’aide de cet instrument qu’ils découvriront qu’un échantillon de pechblende possède une radioactivité élevée due, non pas à l’uranium seul, mais au polonium et au radium, deux éléments nouveaux contenus dans le minerai. En 1899, Ernest Rutherford montrera que les ‘rayons uraniques’ se composent de deux rayonnements distincts : rayons alpha et rayons bêta. Il découvre aussi la radioactivité du thorium. La même année, André Debierne, trouve l’actinium, un nouvel élément radioactif. En 1923, l’émanation du radium, elle même radioactive, sera appelée radon. Un rayonnement, plus pénétrant que les rayons X, est émis par le radium et observé par Paul Villard en 1900 qui le nomme ‘rayon gamma’. Le XIXe siècle s’achève donc sur le début de la chimie des rayonnements : alpha, bêta, gamma, X et sur la découvertes de nouveaux éléments radioactifs qui feront l’objet de recherches approfondies.