Harmonie des sphères - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

"Harmonie des sphères" au sens large

Au sens large, l'expression "musique céleste" désigne la simultanéité et la concordance de sons venus du ciel. Un texte bouddhique soutient ceci : "Le moine, (...) avec cette claire, céleste oreille surpassant l'oreille des hommes, entend à la fois les sons humains et les sons célestes, fussent-ils loin ou près" (Tripityaka, Sutta-pitaka, I : Dîgha-nikâya, 2 : Sâmañña-phala-sutta, 87).


De façon plus large encore certains auteurs pensent à l'harmonie cosmique. Dans le Gorgias (507e), Platon parle des "sages" qui, voyant le lien qui unit la terre et le ciel, les dieux et les hommes, ont donné au Tout le nom de kosmos (ordre, arrangement).

Histoire

La notion d'harmonie des sphères remonte indirectement, sans que ce soit historiquement attesté, au pythagoricien Philolaos, vers 400 av. J.-C. Philolaos est à la fois mathématicien et astronome. Pour lui, le monde est "harmonie et nombre", tout est arrangé selon des proportions qui correspondent aux trois consonances de base de la musique : 2:1 (harmonie), 3:2 (quinte), 4:3 (quarte). Le pythagoricien Nicomaque de Gerasa (vers 200) assigne les notes de l'octave aux corps célestes, de sorte qu'ils génèrent une musique.

Platon prend pour unité de mesure l'intervalle Terre/Lune, et il admet la série suivante : Lune Soleil, Vénus, Mercure, Mars, Jupiter, Saturne.

Aristote fait, le premier, un exposé critique de la notion pythagoricienne d'harmonie des sphères :

"On doit voir évidemment, d'après tout ce qui précède, que, quand on nous parle d'une harmonie résultant du mouvement de ces corps pareille à l'harmonie de sons qui s'accorderaient entr'eux, on fait une comparaison fort brillante, sans doute, mais très vaine ; ce n'est pas là du tout la vérité. Mais, en effet, il y a des gens [les pythagoriciens] qui se figurent que le mouvement de si grands corps [les planètes] doit produire nécessairement du bruit, puisque nous entendons autour de nous le bruit que font des corps qui n'ont ni une telle masse, ni une rapidité égale à celle du Soleil et de la Lune. Par là, on se croit autorisé à conclure que des astres aussi nombreux et aussi immenses que ceux qui ont ce prodigieux mouvement de translation, ne peuvent pas marcher sans faire un bruit d'une inexprimable intensité. En admettant d'abord cette hypothèse, et en supposant que ces corps, grâce à leurs distances respectives, sont pour leurs vitesses dans les rapports mêmes des harmonies, ces philosophes en arrivent à prétendre que la voix des astres, qui se meuvent en cercle, est harmonieuse. Mais comme il serait fort étonnant que nous n'entendissions pas cette prétendue voix, on nous en explique la cause, en disant que ce bruit date pour nos oreilles du moment même de notre naissance. Ce qui fait que nous ne distinguons pas le bruit, c'est que nous n'avons jamais eu le contraste du silence, qui y serait contraire ; car la voix et le silence, se font ainsi distinguer réciproquement l'un par l'autre. Or, de même que les forgerons, par l'habitude du bruit qu'ils font, n'en perçoivent plus la différence, de même aussi, dit-on, il en advient pour les hommes. Cette supposition, je le répète, est fort ingénieuse et fort poétique ; mais il est tout à fait impossible qu'il en soit ainsi." (Aristote, Du ciel, II, chap. 9, 290).

La représentation pythagoricienne de l'univers comme une harmonie a eu tellement de succès dans l'Antiquité que Boèce, au début de son Institution musicale (I,2), en fait l'une des trois parties de la musique — dans sa célèbre tripartition entre musica mundana (musique du monde, ou harmonie des sphères), musica humana (musique de l'homme, c'est-à-dire harmonie intérieure qui unit les parties de l'âme et les éléments du corps) et musica in instrumentis (musique instrumentale, au sens où nous l'entendons aujourd'hui). Le succès de cette représentation du monde, véhiculée par toute la tradition antique reprise par Boèce, ne faiblira pas pendant le Moyen Âge.

Kepler, dans son Mysterium cosmographicum (1596), met en relation les aspects (rapports angulaires des planètes) dont parlent les astrologues et les intervalles musicaux. L'opposition (planètes à 180°) : rapport du cercle entier à sa moitié : 2:1 : octave ; le trigone (planètes à 120°) : rapport de l'ensemble à la plus petite partie : 3:2 = quinte ; le carré (planètes à 90°) : rapport de l'ensemble à la plus grande partie : 4:3 = quarte. Surtout, dans ses Harmonices mundi (1619), Kepler fonde la musique céleste, non plus sur les distances entre planètes, mais sur la vitesse des planètes, en fonction de la deuxième loi de Kepler (loi des aires : la vitesse d'une planète devient donc plus grande lorsque la planète se rapproche du Soleil.). La planète la plus lointaine du Soleil, Saturne, à son aphélie, couvre chaque jour 106 secondes d'arc d'ellipse ; à son périhélie, 135 ; cela équivaut, à 2 secondes près, à un rapport de 4 à 5, qui est la tierce majeure. Jupiter donne la tierce mineure, Mars la quinte, la Terre le demi-ton, Vénus la dièse, Mercure l'octave augmentée de la tierce mineure. Kepler suppose que le ton de Saturne à son aphélie est le sol, en son périhélie le si. L'ensemble des planètes constitue un choeur où la basse est dévolue à Saturne et Jupiter, le ténor à Mars, l'alto à la Terre et à Vénus, le soprano à Mercure.

La loi de Titius-Bode (1772) est une nouvelle théorie de l'harmonie planétaire. En 1702, James Gregory avait noté la suite des nombres 4, 7, 10, 15, 52, 95, pour représenter les distances des planètes en 1/10 du rayon de l'orbite terrestre (1,5 million de kilomètres). En 1766, Titius énonce une relation empirique entre les rayons des orbites des planètes et planètes naines du système solaire, basée sur une progression géométrique de raison 2. En 1772, Bode reprend la théorie : si l'on considère 4 comme la distance moyenne entre Mercure et le Soleil, et si l'on ajoute la série 3 x 1, 3 x 2, 3 x 4, 3 x 8, etc. on obtient des chiffres qui se rapprochent de très près de la distance moyenne réelle des planètes par rapport au Soleil, calculée en unités astronomiques (distance moyenne entre la Terre et le Soleil).

Mercure : distance = 4 (0,387) do Vénus 7 (0,723) ré' Terre 10 (1,000) sol Mars 16 (1,524) do Cérès 28 (2,77) ré Jupiter 52 (5,203) mi bémol' Saturne 100 (9,539) mi Uranus 196 (19,182) MI+ Neptune 388 (30,055) LA'

Le cristallographe Victor Goldschmidt préféra utiliser comme unité astronomique, non la distance de la Terre au Soleil, mais la distance de Jupiter au Soleil (Über Harmonie im Weltraum, in Annalen der Naturphilosophie, t. IX, 1910, p. 51-110). Il obtint Soleil 0, Jupiter 1, Saturne 2, Uranus 4, Neptune 6, Pluton 8, et, pour les planètes intérieures petites et denses à rotation lente : Soleil 0, Mercure 1/13, Vénus 1/7, Terre 1/5, Mars 1/3, Jupiter 1. Au final : Soleil 0, Jupiter 1/2 do, Saturne 1 do', Uranus 2 do, Neptune 3 sol, Pluton 4 do.

En 1781, la découverte d'Uranus, confirme la "loi de Bode". Mais en 1846, la découverte de Neptune montre que la loi de Titius-Bode ne s'applique plus au-delà d'Uranus.

Page générée en 0.094 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise