Gravitation - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Gravitation et astronomie

La gravitation newtonienne est suffisante pour décrire la majorité des phénomènes observés à l'échelle des étoiles. Elle suffit, par exemple, pour décrire l'évolution des planètes du système solaire, à quelques détails près comme l'avance du périhélie de Mercure et l'effet Shapiro.

Mais la relativité générale est nécessaire pour modéliser certains objets et phénomènes astronomiques particuliers : les étoiles à neutrons, les mirages gravitationnels, les objets très compacts tels que les trous noirs...

Effet de mirage gravitationnel prédit par la relativité générale. Les forts champs gravitationnels déforment l'espace autour d'eux ce qui courbe la trajectoire empruntée par les rayons lumineux, déformant ainsi certaines images que nous recevons du cosmos.

Gravitation et physique quantique

La relativité générale a été conçue sur l'hypothèse de la continuité de l'espace-temps (et même sa différentiabilité) et sur l'hypothèse de la continuité de la matière (entre autres pour construire le tenseur de densité d'énergie-impulsion). Cette deuxième hypothèse est clairement une approximation au regard de la physique quantique.

La physique quantique étant l'exploration de l'infiniment petit, l'expérimentation de la gravitation dans ce cadre se heurte à un problème majeur : les trois autres forces qui y règnent sont au moins 1025 fois plus fortes, alors qu'il est déjà difficile d'expérimenter sur elles ; du coup les effets de la gravitation se perdent dans les inévitables imprécisions des mesures.

Cette difficulté expérimentale n'a pas empêché les tentatives théoriques de construire une gravitation quantique, sans résultat susceptible à ce jour de vérification expérimentale.

On peut toutefois remarquer que :

  1. L'ajout du potentiel gravitationnel à l'équation de Schrödinger permet de retrouver un résultat connu : les particules tombent.
  2. L'utilisation des intégrales de chemin de Feynman a permis de prévoir un déphasage de la fonction d'onde dû à la gravitation (galiléenne) ; ces deux effets correspondent à une approximation semi-classique en mécanique quantique.
  3. L'équation des ondes gravitationnelles peut s'interpréter comme celle de la propagation d'une particule appelée graviton, jugée responsable de la gravitation, dont on peut déduire certaines propriétés (notamment sa masse, nulle, et son spin, égal à 2), sans que cela ait pu encore être vérifié expérimentalement malgré les tentatives de plus en plus sophistiquées.

Exemples de théories quantiques de la gravitation : Théorie M, Supergravité, géométrie non commutative, gravitation quantique à boucles.

Page générée en 0.028 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise