Gravitation - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

La modélisation d'Isaac Newton (1643-1727)

Isaac Newton jette un pont entre ciel et terre. Il suggère que la force qui nous retient au sol est la même que celle qui retient la lune autour de la terre.

Mathématicien autant que physicien, Isaac Newton mit au point, entre 1665 et 1685, sa théorie de la mécanique basée sur l'étude de l'accélération, et non seulement de la vitesse comme le faisaient Galilée et René Descartes.

Loi fondamentale de la dynamique : à partir du principe d'inertie de Descartes (qui étudiait la conservation de la quantité de mouvement), il conclut que la somme des forces qui s'exercent sur un corps est égale à ma, où m est la masse « inertielle » (qui rend difficile la mise en mouvement ou l'arrêt d'un véhicule pouvant se déplacer sans frottement) et a est l'accélération (le rythme de la variation de la vitesse).

Newton chercha à unifier les lois connues pour les objets sur terre et les lois observées chez les astres, notamment la gravitation terrestre et les mouvements des planètes.

En considérant deux corps ponctuels exerçant une force gravitationnelle l'un sur l'autre, une justification de la loi de Newton est la suivante :

  • A partir des lois de Kepler, que celui-ci avait obtenues en observant les mouvements des planètes du système solaire, et de la loi de Christiaan Huygens sur la force centrifuge, Newton conclut que la force agissante entre deux corps s'exerce en ligne droite entre les deux corps et est proportionnelle à : \frac{1}{d^2}, où d est la distance entre les deux corps.
  • Considérant que cette force est proportionnelle à la quantité de matière présente dans le corps exerçant cette force (un corps ayant deux fois plus de matière exerce une force égale à la somme des forces de deux corps, donc exerce une force deux fois plus grande), il suppose que la force est proportionnelle à mG, nombre appelé « masse gravifique », proportionnelle à la quantité de matière dans le corps et reflétant sa capacité à exercer cette force (la « charge » gravitationnelle en fait), dépendant sans doute de sa nature (pomme, plomb, argile ou gaz...).
  • En vertu du principe des actions réciproques, la force exercée par l'autre corps sur le premier doit être égale (et de direction opposée) et doit aussi être proportionnelle à m'G, la masse gravifique du deuxième corps.

En écrivant la loi fondamentale de la dynamique, on obtient ma=G\cdot\frac{m_Gm'_G}{d^2}. On constate que pour que l'accélération a (et donc la vitesse) d'un corps en chute libre sur terre soit indépendante de sa masse inertielle (comme l'a expérimenté Galilée), il faut que m = mG pour ce corps, c’est-à-dire que la « masse gravifique » soit égale à la masse inertielle, indépendamment de la nature du corps (en fait la proportionnalité entre ces masses suffit, avec le même coefficient pour tous les matériaux, ensuite on peut les rendre égales avec un choix des unités de mesure). Newton a testé cette égalité pour de nombreux matériaux, et depuis les expériences n'ont jamais cessé, avec de plus en plus de raffinements (balance d'Eötvös, etc.). Depuis, cette égalité a été appelée le principe d'équivalence faible.

L'action à distance (sans contact, à travers le vide) et la propagation instantanée de la force de gravitation ont aussi suscité des doutes, y compris de Newton.

Dans l'écriture vectorielle moderne, la force gravitationnelle s'écrit :

\vec{F}_{12}=-G\cdot\frac{m_1 m_2}{d^2}\vec{u}_{12}
  • \vec{F}_{12} étant la force gravitationnelle exercée par le corps 1 sur le corps 2 (en newton ou m·kg·s-2) ;
  • G, la constante gravitationnelle, qui vaut 6,6742×10-11 N·m2·kg-2 (ou m3·kg-1·s-2) ;
  • m1 et m2, les masses des deux corps en présence (en kilogrammes) ;
  • d, la distance entre les 2 corps (en mètres) ;
  • \vec{u}_{12} est un vecteur unitaire dirigé du corps 1 vers le corps 2 ;
  • le signe – indique que le corps 2 est attiré par le corps 1.

La loi newtonienne de la gravitation permet de retrouver la loi de Galilée, en première approximation: avec d = rayon terrestre et mT = masse de la Terre, on a g=G\cdot\frac{m_T}{d^2}=9,81 m·s-2.

La théorie newtonienne est bien vérifiée expérimentalement. D'un point de vue technique, elle suffit pour faire voler des objets plus lourds que l'air et pour envoyer des hommes sur la Lune. La force de pesanteur est la résultante de la force de gravité et de forces axifuges (la force centrifuge liée à la rotation de la terre sur elle-même, de la loi de l'inertie du mouvement, etc.).

Page générée en 0.354 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise