Considérons une masse d'air située au niveau du sol. Pour imaginer cette masse, on peut par exemple considérer un ballon peu gonflé : la pression à l'intérieur du ballon est tout le temps égale à la pression extérieure (la paroi est détendue et n'exerce pas de pression), et la chaleur peut traverser aisément sa paroi. On peut déplacer cette parcelle d'air dans la verticale et sa température changera selon la détente ou compression adiabatique. Voici trois scénarios possibles pour son déplacement ultérieur.
Si le gradient thermique que suit la parcelle est plus grand que le gradient adiabatique, on est en « atmosphère instable ». Si cette masse d'air s'élève en altitude, par exemple sous l'effet du vent, elle rencontre de l'air qui est plus froid qu'elle même. Donc cette masse d'air est plus chaude que l'air ambiant et donc moins dense. Elle continuera ainsi de monter grâce à la poussée d'Archimède. Inversement, dans les mêmes conditions, si on prend une masse d'air en altitude et qu'on la fait descendre, elle se réchauffe par compression adiabatique, mais moins vite que l'air ambiant qu'elle traverse : elle sera plus froide que l'air des couches inférieures, donc plus dense et elle va continuer à descendre. Les couches instables d'air en mouvement vertical (montée ou descente) voient donc leur mouvement amplifié.
Si le gradient thermique de la parcelle est plus petit que le gradient adiabatique, on est en « atmosphère stable ». Dans ce cas, l'air en altitude est plus chaud que l'air montant, donc la masse d'air montante est plus froide que l'air ambiant. La montée s'arrête, car la poussée d'Archimède est plus faible que le poids, et la masse d'air retourne vers son point de départ. Inversement, si la masse d'air descend, elle devient plus chaude que l'air ambiant, la descente s'arrête et la parcelle d'air retourne à son point de départ. Les couches stables d'air ont donc tendance à rester à leur altitude.
Une particule qui subit un déplacement vertical et qui ne devient ni plus chaude, ni plus froide que le milieu ambiant est dite dans une « atmosphère neutre ». Elle demeurera au nouveau niveau car aucune force ne s'exerce sur elle pour continuer à la déplacer ou à revenir à son point de départ.
Nous avons parlé jusqu'à présent du gradient adiabatique de la couche sans préciser s'il s'agit d'un gradient adiabatique sec ou humide. Comme une parcelle d'air soulevée ne peut changer de température que selon ces deux courbes:
Pour repérer l'instabilité de la masse d'air, on peut pointer la courbe de températures sur un diagramme thermodynamique comme le téphigramme. Sur ces derniers, les taux adiabatiques secs et humides sont tracés et on peut donc facilement les comparer à la courbe.
Lorsque le déplacement vertical de l'air est relativement important, une particule peut devenir instable même si au départ elle était stable par rapport à son environnement. Dans l'atmosphère, une forte poussée peut occasionner un déplacement et amener la parcelle jusqu'au niveau de condensation par ascendance où la vapeur d'eau contenu qu'elle contient se mettra à former du nuage. Entrainée plus haut le long de l'adiabatique mouillé, elle peut à partir d'un certain niveau être plus chaude que le milieu ambiant et donc instable. On appelle le niveau où la température de la particule devient tout juste plus élevée que celle de l'environnement; le niveau de convection libre.
On dit qu'une couche où des particules peuvent devenir instables sous l'influence d'un déplacement forcé se caractérise par de l'instabilité latente (IL). Le terme "latent" indique que l'instabilité est cachée mais qu'elle est néanmoins présente sans que cela paraisse de l'extérieur.
Voici quelles sont les deux conditions permettant de libérer l'instabilité latente :
Il est possible de déterminer quelles sont les couches d'instabilité latente et d'identifier le type d'instabilité latente de façon graphique sur le diagramme thermodynamique.
Au lieu de considérer juste une parcelle soulevée, on peut regarder ce qui se passe quand toute une couche d'atmosphère est déplacée. L'instabilité engendrée par le soulèvement généralisé d'une couche ou de toute une masse d'air fait référence à l'instabilité potentielle (IP) de la couche. Ce phénomène d'ascendance à grande échelle peut être considéré comme une perturbation significative de l'état de base. Ce soulèvement peut provenir de phénomènes à l'échelle synoptique engendrés par des dépressions, des fronts ou des creux barométriques.
On s'intéressera donc à la stabilité d'une couche qui subit un fort déplacement vertical. Le haut de cette couche se trouve à une température et une pression différente de la base. Le contenu en vapeur d'eau peut varier également dans l'épaisseur de la couche. Deux cas sont possibles :
L'air non saturé se refroidit en fonction du gradient adiabatique sec alors que l'air saturé se refroidit en fonction du gradient adiabatique saturé (refroidissement moins prononcé). Ceci donne deux cas sont possibles :
L'atmosphère peut varier de stabilité avec l'altitude. Ainsi on peut retrouver une alternance de couches stables et instables qui donneront des types différents de nuages et des conditions de visibilité et de vent différentes.
Ceci peut se produit à n'importe quel niveau de la troposphère si on réchauffe la base de la couche et/ou refroidit l'air au sommet.
Ceci se produit lorsqu'un phénomène refroidit la base de la couche et/ou réchauffe l'air à son sommet.