Georg Cantor - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Travaux

Cantor fut le fondateur de la théorie des ensembles, à partir de 1874. Avant lui, le concept d'ensemble était plutôt basique, et avait été utilisé implicitement depuis les débuts des mathématiques, depuis Aristote. Personne n'avait compris que cette théorie avait des éléments non implicites. Avant Cantor, il n'y avait en fait que les ensembles finis (qui sont aisés à comprendre) et les ensembles infinis (qui étaient plutôt sujets à discussion philosophique). En prouvant qu'il y a une infinité de tailles d'ensembles infinis, Cantor a établi que les bases de cette théorie étaient non-triviales. La théorie des ensembles joue ainsi le rôle d'une théorie fondatrice pour les mathématiques modernes, parce qu'elle interprète des propositions relatives à des objets mathématiques (par exemple, nombres et fonctions) provenant de toutes les disciplines des mathématiques (comme l'algèbre, l'analyse et la topologie) en une seule théorie, et fournit un ensemble standard d'axiomes pour les prouver ou les infirmer. Les concepts de base de celle-ci sont aujourd'hui utilisés dans toutes les disciplines des mathématiques.

Dans une de ses premières publications, Cantor prouve que l'ensemble des nombres réels contient plus de nombres que l'ensemble des entiers naturels ; ce qui montre, pour la première fois, qu'il existe des ensembles infinis de tailles différentes. Il fut aussi le premier à apprécier l'importance des correspondances un pour un (les bijections) dans la théorie des ensembles. Il utilisa ce concept pour définir les ensembles finis et infinis, subdivisant ces derniers en ensembles dénombrables et non dénombrables.

Cantor introduisit des constructions fondamentales en théorie des ensembles, comme l'ensemble composé de tous les sous-ensembles possibles de A, appelé ensemble des parties de A. Il prouva plus tard que la taille de cet ensemble est strictement supérieure à celle de A, même quand A est un ensemble infini ; ce résultat fut bientôt connu sous le nom de théorème de Cantor. Cantor développa une théorie entière (une arithmétique) des ensembles infinis, appelés cardinaux et ordinaux, qui étendait l'arithmétique des nombres naturels. Il définit une notation des nombres cardinaux à l'aide de la lettre de l'alphabet hébreu א (aleph)(convenablement indicée); pour les ordinaux, il employa la lettre grecque ω (omega). Cette notation est toujours utilisée aujourd'hui.

L'hypothèse du continu, introduite par Cantor, fut présentée par David Hilbert en premier parmi une liste de 23 problèmes ouverts lors de son célèbre exposé au Congrès International des mathématiciens de 1900 de Paris. Le travail de Cantor a aussi attiré d'autres remarques favorables que l'éloge d'Hilbert. Le philosophe américain Charles Peirce prisait la théorie des ensembles de Cantor, et, à la suite des cours magistraux de Cantor au premier congrès international des mathématiciens (à Zurich en 1897), Hurwitz et Hadamard aussi exprimèrent leur admiration. A ce congrès, Cantor renouvela son amitié et sa correspondance avec Dedekind. Depuis 1905, Cantor correspondait avec son admirateur britannique et traducteur Philip Jourdain sur l'histoire de la théorie des ensembles et sur ses idées religieuses, ce qui fut publié plus tard,comme le furent nombre de ses travaux présentés aux congrès.

Certains, comme Galilée avaient déjà remarqué qu'un ensemble infini, comme les carrés des nombres entiers, pouvait être mis en correspondance avec un ensemble infini le contenant strictement, en l'occurrence tous les entiers. Il y a d'une certaine façon « autant » de carrés de nombres entiers que de nombres entiers. Cantor est le premier à donner un sens précis à cette remarque, à l'aide de la notion de bijection qu'il introduit (sous un autre nom) à l'occasion, puis à la systématiser. Par exemple Cantor montre qu'il y a autant de nombres rationnels (ceux représentés par des fractions) que de nombres entiers. Cantor va plus loin et découvre qu'il y a plusieurs infinis, au sens où ils ne peuvent être mis en correspondance entre eux par une bijection : il montre en 1874 que la droite réelle contient plus de nombres transcendants (« beaucoup plus ») que de nombres algébriques (solutions d'équations polynomiales à coefficients rationnels) ; il découvre aussi cette année-là, à sa grande surprise ("Je le vois, mais je ne le crois pas", écrit-il à Dedekind) que l'on peut mettre en bijection la droite et le plan (autrement dit , qu'il y a "autant" de points dans un petit segment que dans l'espace entier).

Cantor introduit la notion d'ensemble infini dénombrable : un ensemble qui peut être mis en bijection avec les nombres entiers, c’est-à-dire que l'on peut, d'un certaine façon, numéroter tous ses éléments par des entiers (sans répétition mais ce n'est pas essentiel). Il montre que les ensembles des nombres entiers relatifs, des nombre rationnels, et des nombres algébriques sont tous dénombrables, mais que l'ensemble des nombres réels ne l'est pas.

Il donne une preuve élégante et très courte de ce dernier résultat en 1891, où il utilise ce qui est connu maintenant comme l'argument diagonal de Cantor, et qui a été depuis très utilisé, en particulier en logique mathématique et en théorie de la calculabilité. Il utilise cet argument pour montrer que l'ensemble de tous les sous-ensembles d'un ensemble A, appelé ensemble des parties de A, a strictement plus d'éléments que A, même si A est infini, c’est-à-dire que ces deux ensembles ne peuvent être mis en bijection. Cette proposition est aujourd'hui appelée Théorème de Cantor. Elle a pour conséquence, l'existence d'une hiérarchie stricte, et elle-même infinie, d'ensembles infinis.

Pour étudier l'infini, Cantor introduit deux notions de nombres et leur arithmétique particulière (somme, produit, exponentiation). La première est celle de nombre cardinal, qui caractérise une classe d'ensembles pouvant être mis en bijection. Le plus petit nombre cardinal infini est celui des entiers naturels, le dénombrable. Le cardinal des nombres réels, ou de façon équivalent de l'ensemble des sous-ensembles des entiers naturels, est la puissance du continu. Cantor introduit la lettre hébraïque א (aleph) pour désigner les cardinaux, notation toujours en usage aujourd'hui. Ainsi le cardinal de l'ensemble des entiers naturels est noté ℵ0 (lire aleph zéro). La puissance du continu est un cardinal forcément supérieur ou égal au cardinal suivant immédiatement le dénombrable, que l'on note ℵ1. Cantor supposait que c'était ℵ1, c'est l'hypothèse du continu.

La seconde est celle de nombre ordinal, qui généralise les entiers en tant qu'ils sont ordonnés. Il utilise pour cela la notion de bon ordre, qu'il introduit en 1883. Cantor note les ordinaux avec des lettres grecques, le plus petit ordinal infini, celui de l'ensemble des entiers naturels, est noté ω0 (aujourd'hui simplement ω). Pour les nombres cardinaux il utilise en fait un ordinal en indice de la lettre ℵ.

Les dix premières productions de Cantor portaient sur la Théorie des nombres, le sujet de sa thèse. Suivant la suggestion du professeur Édouard Heine, Cantor s'oriente vers l'analyse. Heine propose à Cantor de résoudre un problème dont la solution échappait à Dirichlet, Lipschitz, Bernhard Riemann et Édouard Heine lui-même : l'unicité de la représentation d'une fonction par une série de Fourier. Cantor résout ce problème difficile en 1869. Entre 1870 et 1872, Cantor publie d'autres travaux sur les séries trigonométriques, incluant une définition des nombres irrationnels comme des suites convergentes de nombres rationnels. C'est l'une des deux constructions usuelles des nombres réels. Dedekind, avec qui Cantor s'est lié d'amitié en 1872, cite ce travail dans la publication contenant sa propre construction des nombres réels, à partir de ce que l'on appelle maintenant les coupures de Dedekind.

La publication de Cantor de 1874, "Sur une propriété caractéristique de tous réels algébriques", est celle qui marque la naissance de la Théorie des ensembles. Elle a été publiée dans le Journal de Crelle, malgré l'opposition de Kronecker et grâce au soutien de Dedekind. C'est dans celle-ci qu'il montre que les nombres réels ne sont pas dénombrables, démonstration qu'il simplifiera dans un article paru en 1891, en utilisant le célèbre argument diagonal.

La publication de 1874 montre alors que les nombres algébriques, c’est-à-dire les racines d'équations polynomiales à coefficients entiers, sont dénombrables. Les nombres réels qui ne sont pas algébriques sont dits transcendants. Liouville avait établi l'existence de nombres transcendants en 1844. Cantor avait également montré que la réunion de deux ensembles dénombrables doit être dénombrable. Comme l'ensemble des nombres réels est la réunion de l'ensemble des nombres algébriques, et de l'ensemble des nombres transcendants, que l'ensemble des nombres algébriques est dénombrable, et que l'ensemble des nombres réels n'est pas dénombrable, l'ensemble des nombres transcendants ne peut pas l'être non plus. C'est-à-dire que non seulement il existe des nombres transcendants, mais il y a en fait une infinité, et même « autant » que de nombres réels ; « presque tous » les réels doivent être transcendants. Cantor remarque qu'ainsi, il a en particulier redémontré le théorème de Liouville selon lequel tout intervalle réel contient une infinité de nombres transcendants.

Entre 1879 et 1884, Cantor publia une série de six articles dans les Mathematische Annalen qui constituent une introduction à sa théorie des ensembles. En même temps grandissait une opposition croissante à ses idées, menée par Kronecker, qui n'admettait des concepts mathématiques que s'ils pouvaient être construits en un nombre fini d'étapes à partir des entiers, qu'ils considérait comme seuls donnés intuitivement. Pour Kronecker, la hiérarchie des infinis de Cantor était inadmissible, et accepter le concept d'infini actuel ouvrirait la porte à des paradoxes qui mettraient en danger l'édifice mathématique tout entier. Cantor découvrit également l'ensemble qui porte son nom durant cette période.

Le cinquième article de cette série, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre" ("Fondements d'une théorie générale des agrégats") est le plus important des six, et fut aussi publié en monographie séparée. Il contenait des réponses de Cantor à ses critiques, et montrait comment les nombres transfinis formaient une extension systématique des entiers naturels. Il commence par définir les ensembles bien ordonnés ; les nombres ordinaux sont alors introduits comme types d'ordre de ces ensembles. Cantor définit ensuite l'addition et la multiplication des ordinaux. En 1885, Cantor étendit sa théorie des types d'ordre, les ordinaux en devenant simplement un cas particulier.

En 1891, il publia un article contenant son élégant "argument diagonal" pour montrer l'existence d'un ensemble non dénombrable ; il appliqua la même idée pour prouver le théorème de Cantor : le cardinal de l'ensemble des parties d'un ensemble A est strictement plus grand que le cardinal de A. Ceci établissait la richesse de la hiérarchie des ensembles infinis et de l'arithmétique des cardinaux et des ordinaux que Cantor avait définie. L'argument diagonal joue un rôle fondamental dans la solution du problème de l'arrêt, et dans la preuve du premier théorème d'incomplétude de Gödel

En 1895 et 1897, Cantor publia un article en deux parties dans les Mathematische Annalen (éditées par Felix Klein) ; ce furent ses dernières contributions significatives à la théorie des ensembles. Le premier article commence par définir ensembles, sous-ensembles, etc. d'une manière qui reste largement acceptable aujourd'hui ; l'arithmétique des cardinaux et des ordinaux y est réexaminée. Cantor aurait voulu que le second article contienne une preuve de l'hypothèse du continu, mais dû se contenter d'exposer sa théorie des ensembles bien ordonnés et des ordinaux. Il essaie également de démontrer que si A et B sont des ensembles tels que A est en bijection avec un sous-ensemble de B et B en bijection avec un sous-ensemble de A, alors A et B sont équipotents ; Ernst Schröder avait énoncé ce théorème un peu auparavant, mais sa preuve, tout comme celle de Cantor, présentait des lacunes ; Felix Bernstein fournit une démonstration correcte dans sa thèse de 1898, d'où le nom actuel de théorème de Cantor–Bernstein.

Page générée en 0.162 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise