Géométrie euclidienne - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Approche algébrique de la géométrie

La conception de l'espace par les mathématiciens n'est historiquement pas figée ; les évolutions se font pour plusieurs raisons : le besoin de mieux fonder la théorie géométrique, d'une part en comblant certains déficits de rigueur du texte d'Euclide, d'autre part en liant la théorie à d'autres branches des mathématiques ; mais aussi la nécessité de pouvoir utiliser l'important corpus de résultats géométriques dans d'autres espaces que celui de notre monde physique ou que le plan usuel.

Ces deux derniers objectifs sont en fait atteints grâce à une branche particulière des mathématiques : l'algèbre linéaire.

Motivation : la mécanique du solide

Un solide possède 6 degrés de liberté.

La mécanique du solide apporte un point de vue nouveau sur la géométrie euclidienne. Si notre espace décrit la position du centre de gravité, le solide peut tourner autour de ce centre. Il dispose encore trois degrés de liberté supplémentaires. Il est nécessaire de considérer un espace de dimension six, pour rendre compte de la position exacte du solide.

Il en est de même pour la vitesse. Elle est décrite par le mouvement du centre de gravité, représenté classiquement par un vecteur de l'espace physique et par une rotation, que l'on peut modéliser par un vecteur (vecteur perpendiculaire au plan de rotation et dont la longueur est proportionnelle à la vitesse angulaire). Mathématiquement, le champ des vitesses est dit équiprojectif et se représente par un torseur. L'espace auquel il appartient est encore de dimension six.

Cette démarche consistant à définir un espace abstrait, qui ne représente plus directement notre univers, mais un espace spécifique au problème étudié, est féconde. Elle permet d'utiliser les outils de la géométrie euclidienne dans des contextes variés.

La mécanique statique est un autre exemple, un objet est considéré comme l'assemblage d'un ensemble de solides soumis à des contraintes qui les lient entre eux. L'objet est l'étude de la stabilité d'un corps, comme un pont ou un gratte-ciel. La dimension est égale à six fois le nombre de solides composant l'objet. Cette démarche est surtout développée durant le XXe siècle. En effet, la dimension croît rapidement et une puissance de calcul accessible uniquement depuis l'arrivée des ordinateurs est nécessaire pour rendre ces techniques opérationnelles.

Ces méthodes, dans leur forme la plus générale, aboutissent à la mécanique analytique dont les applications sont innombrables, et qui constitue le cadre général de la physique théorique.

Motivation : la statistique

Exemple de représentation euclidienne d'un dépouillement.

Certaines techniques de dépouillement d'un sondage utilisent les propriétés de la géométrie euclidienne. Celle-ci permet, grâce à la notion de distance, une modélisation pertinente, et, grâce aux outils de l'algèbre linéaire, une algorithmique pour les calculs effectifs.

Si les critères, représentés par les questions d'un sondage, peuvent être ramenés à des grandeurs mesurables, alors chaque sondé apparaît comme un point d'un espace dont la dimension est égale au nombre de critères. Cette géométrie est essentielle en statistique :

  • Elle réduit la dimension de l'espace à travers le choix d'axes (appelés ici composantes) particulièrement révélateurs et en nombre réduit. L'analyse du sondage devient réalisable dans un espace plus petit, dépolluée du bruit non significatif, et graphiquement représentable pour une compréhension intuitive du dépouillement.
  • Elle mesure les corrélations entre les différentes questions. La figure illustre ici deux critères, chacun représenté par un axe. Pour cet exemple, en première analyse, quand le critère de l'axe horizontal prend des valeurs de plus en plus élevées, alors le critère de l'axe vertical prend des valeurs de plus en plus basses. Les deux critères sont dits anticorrélés.

La démarche consistant à analyser des données à travers une géométrie euclidienne est utilisée dans de nombreuses sciences humaines. Elle permet l'analyse des comportements même lorsque ceux-ci ne suivent pas des lois rigides.

Modèle linéaire de la géométrie : les espaces euclidiens

Version géométrique du théorème de Pythagore, le théorème fondamental des espaces euclidiens.

La notion d'espace vectoriel fournit une première structure purement algébrique dans laquelle le langage géométrique peut s'exprimer. La notion de coordonnée devient centrale, et le plan, par exemple, est en partie modélisé par un espace vectoriel de dimension deux, qui s'identifie essentiellement à l'ensemble de tous les couples de coordonnées (x1, x2), où x1 et x2 sont deux nombres réels ; un point est alors simplement un tel couple. La généralisation se fait facilement à l'espace de dimension 3 en considérant des triplets de coordonnées, mais aussi aux espaces de dimension n. Dans cette modélisation, le plan abstrait tel que décrit par les axiomes a été muni arbitrairement d'une origine.

La description géométrique des espaces vectoriels fait jouer un rôle très particulier au vecteur nul : le vecteur "0". Les objets mathématiques habituellement associés sont des droites qui se rencontrent toutes en 0 et des transformations qui laissent inchangé le vecteur 0. On définit une structure dérivée de celle d'espace vectoriel, qui porte le nom d'espace affine, et pour lequel les points jouent tous des rôles identiques. En termes imagés, ce procédé consiste à transférer la situation observée en 0 à tous les autres points de l'espace. Cela se fait par translation, plus précisément en faisant agir l'espace vectoriel sur lui-même par translation.

La structure d'espace affine permet de rendre compte pleinement des propriétés d'incidence : par exemple, dans un espace affine réel de dimension 2, les droites vérifient le cinquième postulat d'Euclide.

Cependant, seules les propriétés d'incidence sont modélisées, une grande partie de la géométrie euclidienne classique n'est pas atteinte : il manque essentiellement une notion de mesure. Un outil linéaire permet de combler cette lacune ; c'est le produit scalaire. Un espace affine réel muni d'un produit scalaire est appelé espace euclidien, toutes les notions géométriques classiques sont définies dans un tel espace, et leurs propriétés issues de l'algèbre vérifient tous les axiomes euclidiens : les théorèmes géométriques issus du corpus classiques, portant sur n'importe quels objets vérifiant ces axiomes, deviennent donc en particulier des théorèmes pour les points, droites, cercles, tels que définis dans un espace euclidien.

Enfin, les espaces affines euclidiens ne sont pas limités aux dimensions 2 ou 3 ; ils permettent de rendre compte des différents problèmes physiques et statistiques évoqués ci-dessus, et qui mettent en jeu un plus grand nombre de variables, avec l'utilisation d'un langage géométrique. Beaucoup de théorèmes d'incidence et de mesure se généralisent presque automatiquement, notamment le théorème de Pythagore.

Le passage à un degré d'abstraction supérieur offre un formalisme plus puissant, donnant accès à de nouveaux théorèmes et simplifiant les démonstrations ; l'intuition géométrique habituelle des dimensions 2 ou 3 est parfois défiée par ces dimensions supérieures, mais reste souvent efficace. Les gains sont suffisants pour que les analyses sophistiquées soient généralement exprimées à l'aide du produit scalaire.

Historique de l'approche linéaire

Arthur Cayley.

La notion d'espace vectoriel apparaît petit à petit. René Descartes et Pierre de Fermat utilisent le principe de coordonnées comme un outil pour résoudre avec une approche algébrique des problèmes géométriques. La notion de repère orthonormal est utilisée en 1636. Bernard Bolzano développe une première conception géométrique où les points, les droites et les plans sont définis uniquement par des opérations algébriques, c’est-à-dire l'addition et la multiplication par un nombre. Cette approche permet de généraliser la géométrie à d'autres dimensions que celles des plans et des volumes. Arthur Cayley est un acteur majeur dans la formalisation des espaces vectoriels.

Un contemporain William Rowan Hamilton utilise un autre corps de nombres que celui des réels : les imaginaires. Il montre que cette démarche est essentielle en géométrie pour la résolution de nombreux problèmes. Hermann Grassmann décrit enfin les espaces vectoriels (en fait des algèbres) dans leur généralité.

À la suite des travaux de Gaspard Monge , son élève Jean Poncelet réforme la géométrie projective. La géométrie projective, géométrie de la perspective, devient aussi modélisable par l'algèbre linéaire : un espace projectif se construit à l'aide d'un espace vectoriel grâce à un processus d'identification des points suivant une règle de perspective. Les espaces projectifs sont généralisés aux dimensions quelconques. La géométrie projective est une géométrie non euclidienne, dans le sens où le cinquième postulat d'Euclide y tombe en défaut. L'algèbre linéaire fournit non seulement un modèle pour la géométrie euclidienne, mais aussi, une ouverture vers un monde plus vaste.

Page générée en 0.296 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise