Géométrie euclidienne - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Remise en cause de la géométrie d'Euclide

L'approche linéaire n'est pas une remise en question des conceptions euclidiennes. Elle permet au contraire de généraliser celles-ci, d'étendre leur portée, et de les enrichir en retour. Un autre grand mouvement historique remet en cause la formalisation euclidienne.

Le cinquième postulat

Le XIXe siècle voit l'apparition de nombreuses nouvelles géométries. Leur naissance résulte d'interrogations sur le cinquième postulat, que Proclus exprime de la manière suivante : Dans un plan, par un point distinct d'une droite, il existe une et une seule droite parallèle à cette droite. Ce postulat, admis par Euclide, et que l'intuition soutient, ne devrait-il pas être un théorème ? Ou, au contraire, peut-on imaginer des géométries où il tomberait en défaut ?

Un enjeu durant le XIXe siècle pour les mathématiciens, sera de parvenir à se détacher d'une intuition physique casuellement inféconde, ainsi que d'un respect inopportun des leçons des anciens, pour oser inventer de nouvelles conceptions géométriques ; celles-ci ne s'imposeront pas sans difficulté.

Dès le début du siècle Carl Friedrich Gauss s'interroge sur ce postulat. En 1813 il écrit : Pour la théorie des parallèles, nous ne sommes pas plus avancés qu'Euclide, c'est une honte pour les mathématiques. En 1817 il semble que Gauss ait acquis la conviction de l'existence de géométries non euclidiennes. En 1832, le mathématicien János Bolyai rédige un mémoire sur le sujet. L'existence d'une géométrie non euclidienne n'est pas formellement démontrée, mais une forte présomption est acquise. Le commentaire de Gauss est éloquent : Vous féliciter reviendrait à me féliciter moi-même. Gauss n'a jamais publié ses résultats, probablement pour éviter une polémique. Indépendamment, Nikolaï Lobatchevski devance Bolyai sur la description d'une géométrie analogue dans le journal russe Le messager de Kazan en 1829. Deux autres publications sur le sujet n'ont néanmoins pas plus d'impact sur les mathématiciens de l'époque.

Bernhard Riemann établit l'existence d'une autre famille de géométries non euclidiennes pour son travail de thèse sous la direction de Gauss. L'impact reste faible, la thèse n'est publiée que deux ans après sa mort.

Les géométries de Lobatchevski et Bolyai correspondent à des structures hyperboliques où il existe une infinité de parallèles passant par un même point. Cette situation est illustrée dans la figure ci-contre, les droites d1, d2 et d3 sont trois exemples de parallèles à D passant par le point M. Le cas riemannien correspond au cas elliptique où aucune parallèle n'existe.

L'unification de Klein

Université d'Erlangen.
Félix Klein.

La situation est devenue confuse, les Éléments ne sont pas en mesure de rendre compte d'une telle diversité. On compte nombre d'espaces géométriques : les espaces vectoriels euclidiens, les espaces affines euclidiens, les espaces projectifs, les géométries elliptiques et hyperboliques, plus quelques cas exotiques comme le ruban de Möbius. Chaque géométrie possède des définitions différentes, mais présentant de nombreuses analogies et aboutissant sur des séries de théorèmes plus ou moins différents selon les auteurs et les géométries. La fin de la suprématie euclidienne engendre un important désordre, qui rend la compréhension de la géométrie difficile. Un jeune professeur de 24 ans, Felix Klein, nouvellement nommé professeur à l'université d'Erlangen, propose une organisation pour toutes ces géométries dans son discours inaugural. Ces travaux ont cette fois un vaste retentissement sur la communauté scientifique, la suprématie euclidienne disparaît et la polémique née de la remise en cause du cinquième postulat s'éteint. Son travail implique une réforme de la formalisation des espaces euclidiens. Il utilise les travaux de James Joseph Sylvester sur ce que l'on appelle maintenant les produits scalaires. La géométrie euclidienne reste d'actualité au prix d'une refonte profonde de sa construction.

Dans son programme d'Erlangen, Felix Klein trouve le critère permettant de définir toutes les géométries. Les gains attendus sont au rendez-vous. Les géométries sont classifiées, celles qui se présentent comme des cas particuliers apparaissent et les théorèmes génériques peuvent s'exprimer sur l'intégralité de leur domaine d'application ; en particulier, l'espace vérifiant l'axiomatique euclidienne est la limite qui sépare les familles de géométries hyperboliques de Bolyai et Lobatchevski des géométries elliptiques de Riemann.

Klein définit une géométrie euclidienne par l'ensemble de ses isométries, c'est-à-dire les transformations laissant les distances invariantes. Cette approche caractérise parfaitement cette géométrie. Les isométries bénéficient d'une structure de groupe géométrique. Dans le cas euclidien cette formalisation est équivalente à la donnée d'un produit scalaire, et si elle est d'un maniement plus abstrait, elle est aussi plus générale. Définir une géométrie par un groupe de transformations est une méthode souvent efficace.

Euclide et la rigueur

La dernière réforme de la géométrie euclidienne est celle de la logique. La critique ne porte pas tant sur les démonstrations d'Euclide mais sur l'absence de fondements suffisants pour une preuve rigoureuse. Elle ne date pas d'hier : Eudoxe de Cnide et Archimède ajoutent celui maintenant appelé axiome d'Archimède. Christophorus Clavius note l'absence d'un postulat pour établir son traité des proportions. Rien ne garantit l'existence des segments proportionnels, sujet central du livre V. Gottfried Wilhelm von Leibniz remarque qu'Euclide utilise parfois l'intuition géométrique pour pallier l'absence de certains postulats, par exemple dans sa méthode de construction d'un triangle équilatéral. Il construit deux cercles tel que le centre de chacun est un point de l'autre. Il admet sans preuve que les deux cercles possèdent une intersection. Gauss remarque que la relation entre deux points d'un cercle est bien mal formalisée et qu'elle ne se généralise pas à la sphère.

Cas où les nombres ne sont pas des rationnels.

La fin du XIXe siècle voit non seulement la multiplication de critiques de cette nature, mais aussi la formulation de postulats manquants. Georg Cantor et Richard Dedekind montrent la nécessité d'un postulat de la continuité et le formalisent. Un exemple du manque est donné par le théorème de Pythagore dont la figure de gauche illustre une démonstration. Les triangles IBC et AEC possèdent la même aire car l'un correspond à la rotation d'un quart de tour de l'autre. Cette assertion n'est pas démontrable dans le cadre axiomatique choisi par Euclide. Comme illustrée sur la figure de droite, la rotation d'un huitième de tour de la diagonale d'un carré de côté 1 ne possède pas, a priori son extrémité A' si l'ensemble de nombres choisi n'est pas celui des réels mais des rationnels. Chez Euclide aucune indication n'est donnée sur la nature des nombres utilisés, aucune information ne permet non plus d'établir qu'une rotation ou une symétrie conserve les distances.

La réponse de Hilbert

À l'aube du XXe siècle la connaissance des manques de la formalisation euclidienne, ainsi que les différents éléments de solutions sont suffisamment connus pour permettre une construction rigoureuse. Les mathématiciens David Hilbert et Moritz Pasch sont à l'origine de ce travail.

La construction doit être suffisante pour démontrer les théorèmes de géométrie sans appel à l'intuition, l'application de règles logiques est la seule méthode autorisée. Pasch s'exprime ainsi :

« On énoncera explicitement les concepts primitifs au moyen desquels on se propose de définir logiquement les autres. On énoncera explicitement les propositions fondamentales (postulats) grâce auxquelles on se propose de démontrer logiquement les autres propositions (théorèmes). Ces propositions fondamentales doivent apparaître comme de pures relations logiques entre les concepts primitifs, et cela indépendamment de la signification que l’on donne à ces concepts primitifs. »

Si une construction est suffisamment solide pour ne plus nécessiter l'apport de l'intuition, le vocabulaire choisi n'a pas d'importance. Hilbert l'exprime ainsi :

« On devrait pouvoir parler tout le temps, au lieu de point, droite et plan, de table, chaise et chope. »

Hilbert publie un article sur la question. Dans son introduction, il se fixe comme objectif, la construction d'un système d'axiomes modélisant le plan et répondant à une triple contrainte : être simple, complet et indépendant. Si le mot complet n'est pas défini, Hilbert indique néanmoins, quelques mots plus loin, que ce système doit permettre la démonstration des théorèmes principaux de la géométrie euclidienne. Le système d'axiomes est simple au sens où il est aisé de savoir quels axiomes sont nécessaires à l'établissement des théorèmes. Il est indépendant au sens où la suppression d'un postulat autorise l'existence de nouvelles géométries incompatibles avec les propriétés euclidiennes.

Dans un premier temps, Hilbert construit un système contenant cinq groupes d'axiomes dont le dernier concerne la continuité. Ce dernier peut être enrichi ou non d'un axiome équivalent à la complétude. Il montre alors la compatibilité des groupes d'axiomes. Ce terme signifie qu'il existe au moins une géométrie satisfaisant tous les axiomes. Hilbert construit un univers algébrique, correspondant à un plan affine sur un corps de nombre particulier. Il contient les rationnels et tout nombre de la forme 1 + ω2 admet une racine carrée. Cet univers satisfait à l'intégralité des groupes d'axiomes proposés, ce qui serait impossible si les postulats n'étaient pas compatibles.

L'indépendance est démontrée par la construction de géométries fondées sur une partie seulement de la base axiomatique. Elles diffèrent alors de la géométrie euclidienne. Hilbert démontre rigoureusement l'existence de géométries qu'il qualifie de non euclidiennes, non archimédiennes et non pascaliennes. Si l'indépendance de chaque groupe d'axiomes est prouvée, chacun des groupes contient lui-même plusieurs postulats (à l'exception du Vème qui n'en contient qu'un). Issai Schur et Eliakim Hastings Moore démontrent indépendamment qu'un des axiomes était redondant.

Page générée en 0.141 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise