Fusion nucléaire - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Les réactions de fusion importantes

Chaines de réactions en astrophysique

La chaîne proton-proton prédomine dans les étoiles d’une taille similaire ou inférieure à celle du Soleil.
Le cycle carbone-azote-oxygène prédomine dans les étoiles de masse supérieure à celle du Soleil.

Le processus de fusion le plus important dans la nature est celui qui alimente les étoiles. Le résultat net est la fusion de quatre protons en une particule alpha (noyau d’hélium 4), accompagnée de la libération de deux positrons, de deux neutrinos (qui transforment deux des protons en neutrons) et d’énergie, mais diverses réactions individuelles sont impliquées selon la masse de l’étoile. Dans les étoiles de taille similaire ou inférieure à celle du Soleil, la chaîne proton-proton prédomine. Dans les étoiles plus lourdes, le cycle carbone-azote-oxygène (CNO) est le plus important. Les deux types de processus sont à l’origine de la création de nouveaux éléments dans le cadre de la nucléosynthèse stellaire.

Aux températures et densités du cœur des étoiles, le taux de réaction de fusion est notoirement peu élevé. Par exemple, à la température (T ≈ 15 MK) et à la densité (160 g/cm3) du cœur du Soleil, le taux de libération d’énergie est seulement de 276 μW/cm3 - environ le quart du débit de chaleur par unité de volume d’un homme au repos. Ainsi, la reproduction en laboratoire des conditions du cœur des étoiles à des fins de production d’énergie de fusion est totalement impossible à mettre en pratique. Les taux de réaction dépendant fortement de la température (exp(−E/kT)), il est nécessaire, pour atteindre des taux raisonnables de production d’énergie dans des réacteurs à fusion nucléaire, de travailler à des températures 10 à 100 fois plus élevées que celles du cœur des étoiles, soit T ≈ 0,1 — 1 GK (de l’ordre de 100 millions à un milliard de kelvins).

Critères et candidats pour les réactions terrestres

Dans la fusion mise en œuvre par l’homme, rien n’impose que le combustible utilisé soit constitué de protons, et il est possible d’employer des températures plus élevées pour accéder à des réactions de plus grande section efficace. Cela implique une valeur plus faible du critère de Lawson, et donc moins d’efforts à produire pour le démarrage des réactions. La production de neutrons, qui constitue un sujet de préoccupation car elle entraine une activation radiologique de la structure du réacteur, possède en contrepartie l’avantage d’autoriser l’extraction de l’énergie de fusion ainsi que la production de tritium. Les réactions qui ne produisent pas de neutrons sont dites aneutroniques.

Pour être utilisable comme source d’énergie, une réaction de fusion doit satisfaire à plusieurs critères. Elle doit :

  • être exothermique : Cette condition semble évidente, mais elle limite les réactifs à la partie de la courbe des énergies de liaison correspondant aux faibles numéros atomiques Z (nombre de protons). Elle fait également de l’hélium 4He le produit le plus fréquent en raison de ses liaisons extrêmement étroites, bien que l’on rencontre également 3He et 3H ;
  • impliquer des noyaux à Z faible : La répulsion électrostatique doit être vaincue pour que les noyaux puissent se rapprocher suffisamment pour fusionner ;
  • avoir deux réactifs : À toutes les densités inférieures à celles des étoiles, la collision simultanée de trois particules est trop improbable. Dans le cas du confinement inertiel, on dépasse à la fois les densités et les températures stellaires, ce qui permet de compenser la faiblesse du troisième paramètre du critère de Lawson, la très brève durée de confinement ;
  • avoir deux produits ou plus : Ceci permet la conservation simultanée de l’énergie et de l’impulsion ;
  • conserver à la fois les protons et les neutrons : Les sections efficaces pour l’interaction faible sont trop petites.

Peu de réactions satisfont tous ces critères. Les suivantes sont celles dont les sections efficaces sont les plus grandes :

(1)  2 3 →  4He  3,5 MeV  n0  14,1 MeV  )
(2i)  2 2 →  3 1,01 MeV  p+  3,02 MeV            50%
(2ii)        →  3He  0,82 MeV  n0  2,45 MeV            50%
(3)  2 3He  →  4He  3,6 MeV  p+  14,7 MeV  )
(4)  3 3 →  4He        2 n0            11,3 MeV
(5)  3He  3He  →  4He        2 p+            12,9 MeV
(6i)  3He  3 →  4He        p+  n0        12,1 MeV    51%
(6ii)        →  4He  4,8 MeV  2 9,5 MeV            43%
(6iii)        →  4He  0,5 MeV  n0  1,9 MeV  p+  11,9 MeV  6%
(7i)  2 6Li  →  4He  22,4 MeV
(7ii)        →  3He  4He    n0            2,56 MeV
(7iii)        →  7Li  p+                  5,0 MeV
(7iv)        →  7Be  n0                  3,4 MeV
(8)  p+  6Li  →  4He  1,7 MeV  3He  2,3 MeV  )
(9)  3He  6Li  →  4He  p+                  16,9 MeV
(10)  p+  11 →  4He                      8,7 MeV

Pour les réactions avec deux produits, l’énergie est répartie entre eux en proportion inverse de leurs masses, comme indiqué. Dans la plupart des réactions avec trois produits, la distribution des énergies est variable. Pour les réactions qui peuvent donner naissance à plus d’un ensemble de produits, les proportions sont indiquées. Certaines réactions candidates peuvent être éliminées immédiatement. La réaction D-6Li ne présente aucun avantage par rapport à p-11B car, si elle est pratiquement aussi difficile à déclencher, elle produit considérablement plus de neutrons à travers des réactions 2D-2D annexes. Il existe également une réaction p-7Li, cependant sa section efficace est bien trop faible, sauf peut-être quand Ti > 1 MeV, mais à de telles températures une réaction endothermique, produisant directement des neutrons, devient très significative. Il existe enfin une réaction p-9Be, qui non seulement est difficile à déclencher, mais dans laquelle 9Be peut être aisément amené à se scinder en deux alphas et un neutron.

Outre les réactions de fusion, les réactions suivantes impliquant des neutrons sont importantes pour la production de tritium dans les bombes à fusion « sèches » et certains réacteurs en projet :

n0  6Li  →  3 4He
n0  7Li  →  3 4He  n0

Pour évaluer l’utilité de ces réactions, outre les réactifs, les produits, et l’énergie libérée, on doit aussi disposer d’informations sur la section efficace. Tout dispositif de fusion possède une pression maximale qu’il est capable de maintenir, et un dispositif économique devra toujours travailler à proximité de ce maximum. Cette pression étant donnée, l’énergie de fusion maximale est obtenue en choisissant une température telle que <σv>/T2 soit maximal. C’est aussi la température à laquelle la valeur du triple produit nTτ requise pour l’ignition est minimale, cette dernière étant inversement proportionnelle à <σv>/T2 (voir critère de Lawson). Cette température optimale ainsi que la valeur de <σv>/T2 à cette température sont données pour quelques-unes de ces réactions dans la table suivante.

Combustible T [keV] <σv>/T2 [m3/s/keV2]
2D-3T 13,6 1,24×10-24
2D-2D 15 1,28×10-26
2D-3He 58 2,24×10-26
p+-6Li 66 1,46×10-27
p+-11B 123 3,01×10-27

Nombre de ces réactions forment des chaines. Par exemple, un réacteur alimenté en 3T et 3He crée un peu de 2D, qu’il est alors possible d’utiliser dans la réaction 2D + 3He si les énergies sont « correctes ». Une idée élégante consiste à combiner les réactions (8) et (9). 3He produit par la réaction (8) est susceptible de réagir avec 6Li produit par la réaction (9), avant sa thermalisation complète. On produit ainsi un proton qui à son tour peut subir la réaction (8) avant thermalisation. Une analyse détaillée montre que cette idée ne fonctionnera en fait pas très bien, mais c’est un bon exemple d’un cas où l’hypothèse habituelle d’un plasma maxwellien n’est pas appropriée.

Neutronicité, exigences en confinement et densité de puissance

Les seules réactions de fusion produites jusqu’à présent par l’homme qui aient atteint l’ignition sont celles qui ont été créées dans les bombes à hydrogène ; on voit ici l’explosion d’Ivy Mike, premier essai d’une telle bombe.

N’importe laquelle des réactions ci-dessus peut en principe être à la base de la production d’énergie de fusion. Outre la température et la section efficace abordées plus haut, il est nécessaire d'examiner l’énergie totale des produits de fusion Efus, l’énergie des produits de fusion électriquement chargés Ech, et le numéro atomique Z des réactifs autres que les isotopes de l’hydrogène.

Cependant, la spécification de la réaction 2D-2D entraine certaines difficultés. Tout d’abord, il faut effectuer une moyenne sur les deux branches (2i) et (2ii). Il faut ensuite, ce qui est plus difficile, décider comment traiter les produits 3T et 3He. 3T « brule » si bien dans un plasma de deutérium qu’il est pratiquement impossible de l’en extraire. La réaction 2D-3He est optimale à une température bien plus élevée, et la combustion à la température optimale pour 2D-2D peut être faible ; il semble donc raisonnable de supposer que 3T va brûler, mais pas 3He, et que l’énergie ainsi libérée va s’ajouter à celle de la réaction. L’énergie de fusion 2D-2D sera donc Efus = (4,03+17,6+3,27)/2 = 12,5 MeV, et celle des particules chargées Ech = (4,03+3,5+0,82)/2 = 4,2 MeV.

Un autre aspect spécifique de la réaction 2D-2D tient à la présence d’un seul réactif, ce que l’on doit prendre en compte lors du calcul du taux de réaction.

En se basant sur ces choix, les paramètres de quatre des réactions les plus importantes sont présentés dans la table suivante :

Combustible Z Efus [MeV] Ech [MeV] Neutronicité
2D-3T 1 17,6 3,5 0,80
2D-2D 1 12,5 4,2 0,66
2D-3He 2 18,3 18,3 ~0,05
p+-11B 5 8,7 8,7 ~0,001

La dernière colonne correspond à la neutronicité de la réaction, définie comme la fraction de l’énergie de fusion libérée sous forme de neutrons. C’est un indicateur important de l’ampleur des problèmes associés aux neutrons, tels que les dommages provoqués par les radiations, la protection biologique, la télémanipulation et la sécurité. Pour les deux premières réactions, elle est donnée par (Efus-Ech)/Efus. Pour les deux dernières, où cette formule donnerait un résultat égal à 0, les valeurs indiquées sont des estimations grossières basées sur des réactions annexes qui produisent des neutrons dans un plasma en équilibre thermique.

Bien entendu, il est nécessaire de mélanger les réactifs dans les proportions optimales. C’est le cas lorsque chaque ion de réactif et ses électrons associés participent pour moitié à la pression. En supposant que la pression totale est fixée, cela signifie que la densité des ions non hydrogène est plus faible que celle des ions hydrogène d’un facteur 2/(Z+1). En conséquence le taux de ces réactions est réduit du même facteur, ce qui constitue la différence la plus importante dans les valeurs de <σv>/T2. D’autre part, comme la réaction 2D-2D n’a qu’un seul réactif, le taux est deux fois plus élevé que si le combustible était constitué de deux isotopes d’hydrogène.

Il existe donc une « pénalité » de (2/(Z+1)) pour les combustibles autres que l’hydrogène, provenant du fait qu’ils ont besoin de plus d’électrons, ce qui absorbe de la pression sans participer à la réaction de fusion. Il est généralement correct de supposer que la température électronique et la température ionique sont pratiquement égales. Certains auteurs envisagent que les électrons puissent être maintenus à une température nettement inférieure à celle des ions. Dans de telles situations, connues sous le nom de « modes à ions chauds », la « pénalité » ne s'appliquerait pas. Il existe de la même façon un « bonus » d’un facteur 2 pour la réaction 2D-2D dû au fait que chaque ion peut réagir avec n’importe lequel des autres ions, et pas seulement avec une fraction d’entre eux.

La table suivante permet de comparer ces réactions.

Combustible <σv>/T2 Pénalité/bonus Réactivité Critère de Lawson Densité de puissance (W/m3/kPa2) Rapport de densité de puissance
2D-3T 1,24×10-24 1 1 1 34 1
2D-2D 1,28×10-26 2 48 30 0,5 68
2D-3He 2,24×10-26 2/3 83 16 0,43 80
p+-6Li 1,46×10-27 1/2 1700 0,005 6800
p+-11B 3,01×10-27 1/3 1240 500 0,014 2500

La valeur maximale de <σv>/T2 est reprise d’une table précédente. Le facteur « pénalité/bonus » est celui lié, soit à un réactif non hydrogène, soit à une réaction sur une espèce unique. Les valeurs de la colonne « réactivité » sont obtenues en divisant 1,24×10-24 par le produit des deuxième et troisième colonnes ; chaque valeur indique le facteur de ralentissement des réactions par rapport à la réaction 2D-3T dans des conditions comparables. La colonne « critère de Lawson » pondère ces résultats par Ech et donne une indication de la difficulté d’atteindre l’ignition avec ces réactions, par rapport à la réaction 2D-3T. La dernière colonne, étiquetée « densité de puissance », pondère la réactivité pratique par Efus ; elle donne le facteur de réduction de la densité de puissance de fusion pour une réaction particulière par rapport à la réaction 2D-3T, et peut être considérée comme une mesure du potentiel économique.

Pertes par Bremsstrahlung dans les plasmas quasi-neutres isotropes

Les ions subissant la fusion ne le font quasiment jamais de façon isolée, mais sont mélangés à des électrons qui neutralisent la charge électrique des ions en formant un plasma. Les électrons ayant généralement une température comparable ou supérieure à celle des ions, ils entrent en collision avec ceux-ci et émettent des rayons X dont l'énergie est de l'ordre de 10 à 30 keV (Bremsstrahlung ou rayonnement de freinage). Le Soleil et les étoiles sont opaques aux rayons X, mais la plupart des réacteurs de fusion terrestre ont une épaisseur optique faible pour les X de cette gamme d'énergie. La réflexion des rayons X est difficile à obtenir, mais ils sont absorbés (et convertis en chaleur) par une épaisseur de moins d'un mm d'acier inoxydable (qui fait partie du blindage d'un réacteur). Le rapport entre la puissance de fusion produite et ces pertes est un critère de qualité important de la réaction. La valeur maximale de ce rapport est généralement obtenue à une température bien plus élevée que celle qui rend la densité de puissance maximale (voir le sous-chapitre précédent). La table suivante montre la température optimale approximative ainsi que le rapport de puissance à cette température pour plusieurs réactions.

Combustible Ti (keV) Pfusion/PBremsstrahlung
2D-3T 50 140
2D-2D 500 2,9
2D-3He 100 5,3
3He-3He 1000 0,72
p+-6Li 800 0,21
p+-11B 300 0,57

Il est probable que les véritables rapports entre puissance de fusion et puissance de Bremsstrahlung sont notablement plus faibles, et ce pour diverses raisons. En premier lieu, les calculs supposent que l’énergie des produits de fusion est entièrement transmise aux ions du combustible, qui la perdent ensuite par collision au profit des électrons, qui à leur tour perdent de l’énergie par Bremsstrahlung. Cependant, comme les produits de fusion ont une vitesse bien plus grande que les ions du combustible, ils abandonnent une partie significative de leur énergie directement aux électrons. En deuxième lieu, le plasma est supposé ne comporter que des ions de combustible. En pratique, il existe une proportion significative d’ions d’impuretés, qui vont faire diminuer le rapport. En particulier, les produits de fusion eux-mêmes doivent demeurer dans le plasma jusqu’à ce qu’ils aient abandonné leur énergie, et y resteront encore quelque temps, quel que soit le procédé de confinement envisagé. En dernier lieu, tous les canaux de perte d’énergie autres que le Bremsstrahlung ont été considérés comme négligeables. Les deux derniers facteurs sont apparentés. Sur les plans théorique et expérimental, le confinement des particules et le confinement de l’énergie semblent étroitement apparentés. Dans un procédé de confinement qui retient efficacement l’énergie, les produits de fusion vont s’accroître. Si les produits de fusion sont expulsés efficacement, alors le confinement énergétique sera médiocre.

Les températures pour lesquelles le rapport entre puissances de fusion et de Bremsstrahlung est maximal sont dans tous les cas plus élevées que celles pour lesquelles la densité de puissance est maximale et le triple produit de fusion minimal. Cela ne change pas beaucoup le point de fonctionnement optimal pour 2D-3T car la part de Bremsstrahlung est faible, mais cela pousse les autres combustibles vers des régimes où la densité de puissance relativement à 2D-3T est encore plus faible, et le confinement requis encore plus difficile à obtenir. Pour 2D-2D et 2D-3He, les pertes par Bremsstrahlung constituent un problème sérieux, peut-être même bloquant. Pour 3He-3He, p+-6Li et p+-11B, les pertes par Bremsstrahlung paraissent rendre impossible la réalisation d’un réacteur à fusion utilisant ces combustibles avec un plasma quasi-neutre isotrope. Cette limitation ne s'applique ni aux plasmas non neutres, ni aux plasmas anisotropes, qui ont cependant leurs propres défis à relever.

Un escalator sous l'océan
Il y a 10 heures
Page générée en 0.285 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise