Formules de physique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Mouvement harmonique simple et pendule simple

 \vec{F} = -k \Delta \vec{x}\,\!  : la force exercée sur un corps par un ressort est proportionnelle à l'allongement de celui-ci par rapport à sa position d'équilibre, et est orientée dans le sens opposé à cet allongement. C'est une force de rappel. k est la raideur du ressort) d'après la loi de Hooke
 T_{ressort} = 2\pi\sqrt{\frac{m}{k}}\,\!  : la période d'une masse m accrochée à une ressort de rigidité k est proportionnelle à la racine du rapport de la masse et de cette rigidité
 \nu = \frac{1}{T}\,\!
 \omega = 2 \pi \frac{1}{T}\,\! = 2 \pi \nu = \sqrt{\frac{k}{m}}
 E_p = \frac{1}{2}kx^2\,\!
 v_{max ressort} = x\sqrt{\frac{k}{m}}\,\!
 T_{pendule} = 2\pi\sqrt{\frac{L}{g}}\,\! (pour un pendule simple)

Travail, énergie, et puissance

Le travail, l'énergie et la puissance décrivent la manière dont les objets affectent la nature.

 W = \int \vec{F} \cdot d\vec{s} -- définition du travail mécanique, en toute généralité et en particulier si la force change le long du déplacement. Si la force est constante (en direction, sens et norme) sur tout le déplacement, cette relation devient simplement : :  W = \vec{F} \cdot \Delta \vec{x}
 W = \Delta {E_c}\,\!  : une expression du théorème de l'énergie cinétique
 W = -\Delta {E_p}\,\!  : une définition de l'énergie potentielle
 E_p = mgh \,\!  : l'énergie potentielle par rapport à une hauteur repère h est donnée par le produit du poids et de la hauteur h.
 E_m = E_c + E_p \,\!  : l'énergie mécanique d'un système est la somme de son énergie cinétique et de son énergie potentielle
 E_c = \frac{1}{2}{mv^2}\,\!  : définition de l'énergie cinétique d'un corps (formule appliquée à des exemples simples, ce n'est en rien une formule générale)
 P = \frac{dE}{dt} = \int \vec{F}\cdot \vec{v} \,\!
 P_{moy} = \frac{\Delta E}{\Delta t}\,\!

Mouvement circulaire uniforme et gravitation

Un objet, par exemple un satellite autour d'une planète ou une planète autour du soleil, se déplace sur une circonférence à vitesse dont la grandeur est constante.

Dans cette section, ac et Fc réprésentent respectivement l'accélération centripète et la force centripète.

 a_c = \frac{v^2}{r} = \frac{4\pi^2r}{t^2}\,\!
 F_c = \frac{mv^2}{r}\,\!
 F_g = G\frac{m_1 m_2}{r^2}\,\! r est la distance entre les centres des masses : loi de la gravitation universelle
 a_{gravite} = G\frac{m_{planete}}{r^2}\,\!
 v_{satellite} = \sqrt{\frac{Gm_{planete}}{R}}
 E_p^{gravitationnelle} = G\frac{m_1 m_2}{r}
 E_c^{satellite} = G\frac{m_{soleil} m_{planete}}{2R}
 E_c^{satellite} = -G\frac{m_{soleil} m_{planete}}{2R}
 \frac{T_1^2}{a_1^3} = \frac{T_2^2}{a_2^3} exprime une des lois de Kepler

Quantité de mouvement

La quantité de mouvement est la grandeur associée à la vitesse d'une masse, en mécanique classique.

 \vec{p} = m\vec{v} \,\! -- définition : la quantité de mouvement d'un corps est le produit de sa masse par sa vitesse.
 I = \int F \,dt -- définition : l' impulsion ou percussion mécanique reçue par un corps est, si la force exercée sur celui-ci est constante dans le temps, le produit de la force et du temps.
  \Delta p \,\! = I  : la variation de quantité de mouvement d'un corps durant un certain temps Δt est donnée par l' impulsion ou percussion mécanique communiquée à ce corps
 m_1\vec{v_1} + m_2\vec{v_2} = m_1\vec{v_1'} + m_2\vec{v_2'} \,\!  : dans un système pour lequel l'impulsion communiquée à un corps est nulle, la quantité de mouvement ne change pas. Ceci est une expression de la conservation de la quantité de mouvement
 \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2 \,\! (Note: ceci n'est valable que pour les collisions élastiques)

Mouvement circulaire

\boldsymbol \tau=r F \sin \theta  : le couple  \boldsymbol \tau associé à une force par rapport à un axe est égal au produit de la force par la distance à l'axe.
\omega = \frac{\Delta \theta}{\Delta t}
\alpha = \frac{\Delta \omega}{\Delta t}
v_{tan} = r\omega\,  : la vitesse tangentielle est le produit de la vitesse angulaire par le rayon de la trajectoire
a_{tan} = r\alpha\,
a_{rad} = \omega^2r\,
\omega = \omega_0 + \alpha t\, (accélération circulaire constante )
\theta = \omega_0 t + \frac{1}{2}\alpha t^2 (accélération circulaire constante)
\omega^2 = \omega_0^2 + 2\alpha \theta (accélération circulaire constante )
\omega_{moy} = \frac{\omega + \omega_0}{2}\, (accélération circulaire constante )
\sum \tau = I\alpha
E_c = \frac{1}{2}Mv^2_{CM} + \frac{1}{2}I_{CM}\omega^2
L = I\omega\,
\sum \tau = {\Delta L \over \Delta t}
Page générée en 0.132 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise