Force nucléaire - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Propriétés fondamentales de la force nucléaire

  • La force nucléaire est ressentie uniquement par les hadrons.
  • Aux distances typiques de séparation des nucléons (1,3 fm), c'est une force attractive très intense.
  • À de plus faibles distances, la force est fortement répulsive, ce qui maintient une certaine séparation entre nucléons.
  • Au-delà d'environ 1,3 fm, la force décroît exponentiellement vers zéro.
  • À courtes distances, la force nucléaire est plus intense que la force coulombienne; elle peut vaincre la répulsion entre protons produite par la force de Coulomb à l'intérieur du noyau. Cependant, la force de Coulomb entre protons a une plus grande portée et devient la seule force significative entre protons quand ils sont séparés de plus de 2,5 fm.
  • La force NN est pratiquement indépendante de la nature des nucléons, neutrons ou protons. Cette propriété est appelée indépendance de charge.
  • La force NN dépend du fait que les spins des nucléons sont parallèles ou antiparallèles.
  • La force NN possède une composante non centrale ou tensorielle. Cette partie de la force ne conserve pas le moment orbital angulaire, qui est une constante du mouvement produit par une force centrale.

Potentiels nucléaires

Une voie fructueuse pour décrire les interactions nucléaires consiste à construire un potentiel pour l'ensemble du noyau, au lieu d'examiner les nucléons qui le composent. Cette approche est dite macroscopique. Par exemple, la diffusion de neutrons par des noyaux peut être décrite en considérant une onde plane dans le potentiel du noyau, constituée d'une partie réelle et d'une partie imaginaire. Ce modèle est souvent appelé le modèle optique par analogie avec le phénomène de diffusion de la lumière par une sphère de verre opaque.

Les potentiels nucléaires peuvent être locaux ou globaux : les potentiels locaux sont limités à un domaine restreint d'énergies et/ou de masses, alors que les potentiels globaux, qui ont plus de paramètres et sont habituellement moins précis, sont fonction de l'énergie et de la masse du noyau, et peuvent ainsi être utilisés dans un plus vaste domaine d'applications.

Des nucléons au noyau

On pourrait voir dans la physique nucléaire un but ultime : décrire l'ensemble des interactions nucléaires à partir des interactions fondamentales entre nucléons. C'est ce que l'on appelle l'approche microscopique ou ab initio. Deux obstacles majeurs doivent cependant être surmontés avant que ce rêve ne devienne réalité :

  • Les calculs dans des systèmes à plusieurs corps sont complexes et requièrent des moyens de calcul puissants.
  • Il est prouvé que, dans les systèmes à plus de deux nucléons, les forces à trois corps (et peut-être également les forces à quatre corps, cinq corps, etc.) jouent un rôle significatif. Ainsi, les potentiels à trois nucléons (au moins) doivent être inclus dans le modèle.

Cependant, grâce aux progrès croissants des puissances de calcul utilisables, les calculs microscopiques produisant directement un modèle en couches à partir de potentiels à deux ou trois nucléons sont devenus possibles, et ont été tentés pour des noyaux allant jusqu'à une masse atomique égale à 12.

Une approche nouvelle et très prometteuse consiste à développer des théories effectives pour une description cohérente des forces nucléon-nucléon et des forces à trois nucléons. En particulier, on peu analyser la brisure de symétrie chirale en termes de théorie effective (appelée théorie de la perturbation chirale), ce qui autorise un calcul par perturbation des interactions entre nucléons, les pions étant les particules d'échange.

Page générée en 0.034 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise