En mécanique newtonienne, on qualifie la force de Coriolis de force fictive, ou inertielle, en vertu du fait qu'elle n'existe que parce que l'observateur se trouve dans un référentiel en rotation alors qu'aucune force ne s'exerce pour un observateur dans un référentiel galiléen (ou référentiel inertiel).
L'animation à droite nous montre donc la différence entre le point de vue d'un observateur immobile dans un référentiel inertiel et celui d'un observateur qui se déplace avec un disque en rotation dans le même référentiel. Pour le premier, la bille ne fait que se déplacer avec une vitesse constante depuis le centre du disque vers sa bordure. Pour lui, il n'y a pas de force en jeu et la bille se déplace en ligne droite.
Pour le second (le point rouge), la bille se déplace le long d'un arc de cercle, vers sa gauche, changeant constamment de direction. Il faut donc une force pour expliquer ce déplacement. Cette pseudo-force est la force de Coriolis
La définition précédente ne permet que difficilement d'obtenir la forme exact de la force de Coriolis. Pour cela, il faut effectuer directement le calcul de l'accélération dans le repère accéléré. On en déduit qu'il est possible de représenter
où
Cependant, on peut multiplier la vitesse angulaire Ω avec
OU Une seconde définition
où
Dans l'image du disque et de la bille vue précédemment, cette dernière glisse sans frottement et seule la force de Coriolis est présente dans le repère en rotation. Dans le cas du mouvement d'un corps à la surface de la Terre, ce dernier a son mouvement propre à la surface du globe. Il se déplace également dans l'espace, avec la rotation de la planète, en étant attiré par la gravité. Il subit donc en plus une autre force fictive dite force d'inertie d'entraînement. Les deux s'additionnent:
La force d'entrainement comprend plusieurs termes dont la force centrifuge. Comme on l'a vu précédemment, la force de Coriolis dépend de la vitesse du corps en mouvement. La force centrifuge, en réalité la force axifuge, se défini elle comme
Voici un cas très simple, qui exige l'intervention de la force de Coriolis pour être interprété :
Soit deux masses, M et P, décrivant le même cercle à la même vitesse angulaire constante, dans le sens direct et dans le sens indirect.