Filtration - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Caractéristiques des performances des filtres

Pouvoir de séparation

Il doit être homogène et stable dans le temps. Il dépend de la structure du filtre avec répartition homogène du pore, et il ne doit pas y avoir d'évolution du diamètre avec le temps.

Efficacité nominale

C'est la valeur arbitraire relative basée sur le pourcentage de rétention (en million de particules) par rapport à la valeur de référence donnée par le fabricant. Malheureusement différents fabricants de filtres définissent l'efficacité nominale de manière différente. Certains définissent l'efficacité sur la base du pourcentage de rétention des particules de taille égale au seuil de filtration, alors que d'autres la définissent sur la base du pourcentage de rétention des particules de taille égale ou supérieure au seuil de filtration, ce qui donne évidemment une valeur plus élevée. Cette variété de définitions rend la comparaison entre filtres très ardue pour les utilisateurs.

Efficacité absolue

Elle correspond au diamètre de la plus grande particule sphérique et indéformable qui traverse le filtre dans les conditions de test spécifiées.

Caractéristiques physiques des filtres

Capacité de rétention

Elle correspond au diamètre de la plus grande particule solide qui passe à travers le filtre. Selon le mécanisme, on parlera de diamètre moyen des pores (pour le criblage) ou de seuil de rétention (pour l'adsorption).

Diamètre moyen des pores

La porosité est le diamètre maximum des particules retenues par le filtre. La porosité est déterminée par la mesure d'une pression, selon la formule suivante :

 d=4\,\frac{K\,\alpha}{P} \quad \begin{cases}\scriptstyle d, &\scriptstyle \mathrm{Diam\grave etre\ des\ pores} \\[-1ex]\scriptstyle K, & \scriptstyle\mathrm{Constante\ des\ conditions\ op\acute eratoires} \\[-1ex]\scriptstyle \alpha, & \scriptstyle\mathrm{Tension\  superficielle\ du\ liquide} \\[-1ex]\scriptstyle P, & \scriptstyle\mathrm{Pression}\end{cases}

Il y a une arrivée d'air comprimé dans un tube hermétiquement clos qui contient le filtre à étudier. De l'eau est apportée pour humecter la partie supérieure du filtre. Puis, on augmente progressivement la pression de l'air et on note la pression nécessaire pour faire apparaître la première bulle d'air, c'est le point de bulle, permettant de déterminer la taille des particules les plus grosses pouvant passer à travers le filtre et donc, sa spécificité. Après avoir encore augmenté la pression, des bulles apparaissent sur l'ensemble de la surface, et on obtient le diamètre moyen des pores.

Grâce à la formule, on calcule deux valeurs de porosité :

  1. le diamètre des plus gros pores
  2. la porosité proprement dite du filtre

Seuil de rétention

C'est le diamètre de la plus grande particule sphérique solide qui passe au travers du filtre dans des conditions données. Il correspond à 1% des particules d'un diamètre donné retenues par le filtre.

Débit de filtration

Il correspond à la quantité de filtrat recueillie pendant une unité de temps. La formule de poiseuille permet théoriquement de le déterminer :

V=\frac{N.dP.R^4}{8.\eta.L} \qquad \begin{cases} V, & \text{Debit en mL/min} \\ N, & \text{Nombre de canaux (proportionnel à la surface)} \\ dP, & \text{Difference de pression entre les deux faces du filtre} \\ R, & \text{Rayon moyen des pores} \\ L, & \text{epaisseur du filtre}\end{cases}3

Le débit augmente avec la surface, la pression et le diamètre des pores. Il diminue avec la viscosité du fluide et la longueur du filtre.

Ce débit n'est pas constant, car il se produit un phénomène de colmatage. Le colmatage ralentit la filtration par augmentation de l'épaisseur du filtre, mais aussi par réduction du diamètre des pores.

Les matériaux de filtration

Les fibres de cellulose ou de bois

Les adjuvants organiques de filtration constituent une solution de remplacement de la terre de diatomées et de la perlite, en offrant à l’utilisateur de nouveaux avantages techniques et économiques.

En plus de leur excellente capacité de séparation liquide-solide, les adjuvants organiques de filtration sont particulièrement économiques, écologiques, inoffensifs, fiables et performants.

Il est possible de traiter pratiquement toutes les filtrations liquide solide dans les secteurs suivants : Industrie chimique et pharmaceutique, Agro industrie, Boissons, jus de fruits, spiritueux, Métallurgie, travail des métaux - Environnement : traitement des eaux usées, conditionnement des boues.

Liens externes

  • Echelles de granulométrie utilisées notamment en filtration selon les normes internationales et industrielles
Page générée en 0.008 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise