L'uranium est relativement répandu dans l'écorce terrestre, que ce soit dans les terrains granitiques ou sédimentaires. La concentration d'uranium dans ces roches est de l'ordre de 3 g/tonne. À titre d'exemple, un jardin (constitué uniquement de roche) carré de 20 m de côté contient ainsi, sur une profondeur de 10 m, environ 24 kg d'uranium.
L'uranium naturel est également présent dans l'eau. On trouve 3 mg/d'uranium par mètre cube d'eau de mer, soit mille fois moins que dans les roches. Le Rhône en charrie en effet près de 100 tonnes chaque année. Cet uranium provient de l'érosion des reliefs comme les Alpes, due au ruissellement de l'eau. Du point de vue prospectif, la récupération de l'uranium dissout dans l'eau de mer a été étudiée au Japon sans toutefois pouvoir conclure sur la faisabilité industrielle du procédé (en effet, les techniques d'extraction de l'uranium par matrice à échange d'ions est très gourmande en énergie et les coûts liés à son extraction sont exhorbitants, rendant pour l'instant illusoire son extraction de l'eau de mer).
Le minerai naturel d'uranium est la pechblende, qui peut apparaître sous forme de filons métallifères. Dans la plupart des gisements cependant, l'uranium n'est présent qu'à l'état de traces. Concernant la cristallisation de l'uranium dans la nature, on connaît environ 300 minéraux différents, dont une grande quantité montre des cristallisations des plus remarquables (voir les cristaux de Autunite, Boltwoodite, Francevillite, Sengierite, Vanuralite et tant d'autre).
Selon les gisements, le minerai considéré comme exploitable a une teneur de l'ordre de 1 à 2 kg d'uranium par tonne de minerai, soit au moins mille fois la concentration naturelle moyenne du sol. La concentration exploitable varie très fortement suivant les conditions d'exploitation et suivant le cours du minerai.
La prospection de l'uranium utilise tous les outils géologiques classiques. Sa principale originalité est d'utiliser en outre des techniques de prospection radiologique : le passage de quelques dizaines de chocs par seconde à quelques milliers indique la proximité d'un affleurement présentant une concentration potentiellement intéressante.
L'uranium est un métal relativement courant dans l'écorce terrestre, dont la caractéristique la plus remarquable est la radioactivité : il contribue majoritairement au bruit de fond radiométrique. Historiquement, l'outil de détection employé a été le compteur Geiger, dont les premiers modèles transportables (de l'ordre de 25 kg...) sont apparus dans les années 1930. Le compteur Geiger est encore utilisé aujourd'hui, mais les mesures qui demandent plus de précision sont effectuées par un compteur à scintillation.
L'idée d'une prospection aérienne radiologique a été émise en 1943, par G.C. Ridland, géophysicien travaillant à Port Radium (Canada). C'est à présent la technique la plus employée pour la prospection initiale de l'uranium. L'extension du gisement est ensuite précisée par des moyens plus classiques : échantillonnages, puis forages prospectifs.
Les minéralisations uranifères de type discordance ont été découvertes pour la première fois à la fin des années 1960 dans les bassins de l'Athabasca (Canada) et de Mc Arthur (Australie). Leur richesse est exceptionnelle.
Les dépôts d'uranium se situent à l'interface entre un socle d'âge archéen à protérozoïque inférieur et une puissante couverture de grès du protérozoïque moyen. Ils sont généralement associés à des failles à graphite et entourés de halos d'altérations argileuses de haute température. Les minéralisations ne sont pas clairement datées mais sont plus récentes que les couvertures sédimentaires.
Le modèle communément admis pour la genèse de ces gisements est diagénétique hydrothermal, c'est-à-dire que le dépôt a lieu pendant la diagenèse à la faveur de circulations de fluides. Une saumure très concentrée et oxydante percole dans le socle et s'enrichit en calcium, magnésium et uranium par dissolution de monazite, s'appauvrit en quartz et augmente sa température. Au contact d'un front rédox à la discordance, cette saumure dissout du quartz et précipite de l'uranium dans l'espace libéré. Des altérations, remobilisations et précipitations successives ont probablement lieu ultérieurement.
Voir par exemple la configuration illustrée dans l'article réacteur nucléaire naturel d'Oklo.
Les mécanismes de minéralisation en Australie et au Canada sont assez semblables mais leurs formes et leurs emplacements différent sensiblement, ce qui amène les scientifiques à spéculer sur des mécanismes de réduction différents pour les deux bassins. Les géologues essayent cependant de comprendre ce qu'ils ont en commun pour trouver de nouveaux gisements de ce type. Enfin, l'analogie entre ce type de gisement et la conception actuelle du stockage des déchets radioactifs en couche géologique profonde intéresse fortement les chercheurs.