Expérience d'Aspect - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction


Mécanique quantique
 \hat H | \psi\rangle = i\hbar\frac{{\rm d}}{{\rm d}t}|\psi\rangle
Postulats de la mécanique quantique

Histoire de la mécanique quantique

Cette boîte : voir • disc. • mod.

L'expérience d'Aspect est, historiquement, la première expérience qui a réfuté de manière satisfaisante les inégalités de Bell dans le cadre de la physique quantique, validant ainsi le phénomène d'intrication quantique, et apportant une réponse expérimentale au paradoxe EPR, proposé une cinquantaine d'années plus tôt par Albert Einstein, Boris Podolsky et Nathan Rosen.

Cette expérience a été réalisée par le physicien français Alain Aspect à l'Institut d'optique à Orsay entre 1980 et 1982.

Contexte scientifique et historique

Avant de parler de l'expérience en elle-même, et afin de bien la comprendre, il est nécessaire de la replacer dans le contexte historique et scientifique qui a amené à sa réalisation.

Intrication, paradoxe EPR et inégalités de Bell

Intrication quantique

L'intrication quantique est un phénomène qui a été pour la première fois mis en évidence par Erwin Schrödinger en 1935.

La mécanique quantique stipule que deux systèmes quantiques différents (deux particules par exemple) ayant interagi, ou ayant une origine commune, ne peuvent pas être considérés comme deux systèmes indépendants. Dans le formalisme quantique, si le premier système possède un état |\psi\rangle et le second un état |\phi\rangle, alors le système intriqué résultant est représenté par une superposition quantique du produit tensoriel de ces deux états : |\psi\rangle|\phi\rangle. Dans cette notation, il apparaît nettement que l'éloignement physique des deux systèmes ne joue aucun rôle dans l'état d'intrication (car il n'apparaît aucune variable de position). L'état quantique intriqué reste identique — toutes choses étant égales par ailleurs — quel que soit l'éloignement des deux systèmes.

Par conséquent, si une opération de mesure est effectuée sur ce système quantique intriqué, alors cette opération est valable pour les deux systèmes composant l'intricat : les résultats des mesures des deux systèmes sont corrélés.

Paradoxe EPR

Ce résultat a profondément choqué Albert Einstein qui avait une vision réaliste locale de la physique. Cette vision mène à la conclusion que si l'acte de mesure influe sur les deux systèmes, c'est qu'il existe alors une influence se propageant d'un système à l'autre, à une vitesse ne pouvant excèder celle de la lumière. Or le formalisme quantique prévoit que l'influence de l'acte de mesure sur les deux composantes d'un système intriqué est instantané, quel que soit l'éloignement des deux composantes.

Toujours en 1935, Albert Einstein, Boris Podolsky, et Nathan Rosen (E.P.R.) ont alors imaginé une expérience de pensée qui, si on estimait que les états intriqués existent réellement, mène à un paradoxe : soit une influence se déplace plus vite que la lumière (non-causalité), soit la physique quantique est incomplète. Aucun des deux termes de l'alternative n'était acceptable à l'époque, d'où le paradoxe.

Ce paradoxe était d'une grande importance historique, mais n'a pas eu de retentissement immédiat. Seul Niels Bohr a pris au sérieux l'objection apportée par ce paradoxe, et a tenté d'y répondre. Mais cette réponse était d'ordre qualitatif, et rien ne permettait de trancher de manière indubitable entre les deux points de vues. Ainsi, la réalité de l'intrication restait alors une question de point de vue sans support expérimental direct, l'expérience EPR n'étant pas réalisable (à cette époque) en pratique.

En effet, deux obstacles majeurs s'opposaient à la réalisation de cette expérience : d'une part les moyens techniques de l'époque étaient insuffisants, mais aussi (et surtout) il n'y avait apparemment aucun moyen de mesurer directement (par des critères quantitatifs) les effets EPR.

Inégalités de Bell

Les choses sont restées à peu près en l'état jusqu'en 1964. Le physicien irlandais John Stewart Bell publia alors un article dans lequel il mit en évidence des effets quantitatifs et mesurables des expériences de type EPR. Ce sont les fameuses inégalités de Bell. Ces inégalités sont des relations quantitatives que doivent vérifier les corrélations de mesures entre systèmes qui respectent totalement la causalité relativiste. Si ces inégalités sont violées, alors il faut admettre des influences instantanées à distance.

Ces inégalités permettaient de lever un des deux obstacles à la réalisation d'expériences EPR. Mais en 1964, les moyens techniques étaient toujours insuffisants pour mettre en place concrètement ce type d'expérience.

Premières expériences de test des inégalités de Bell

La réalisation d'expériences EPR a commencé à être techniquement envisageable à partir de 1969, un article ayant été publié montrant la faisabilité d'une expérience.

Deux universités, Harvard et Berkeley, ont commencé à mettre en œuvre un protocole expérimental sur ces bases, et les expériences ont eu lieu en 1972. Les résultats furent contradictoires : Harvard constata une vérification des inégalités de Bell, et par conséquent une contradiction avec les prédictions de la physique quantique. Berkeley trouva au contraire une violation des inégalités de Bell, et une vérification de la physique quantique.

Le problème avec ces expériences était notamment une source de particules intriquées peu fiable et à faible débit, ce qui nécessitait des temps d'expériences s'étendant sur plusieurs jours en continu. Or, il est excessivement difficile de maintenir des conditions expérimentales constantes et maîtrisées sur un temps aussi long, surtout avec des expériences aussi délicates. Les résultats des deux expériences étaient donc sujet à caution.

En 1976, la même expérience fut répétée à Houston avec une meilleure source de photons intriqués, de débit plus élevé. Cela permettait de descendre le temps de l'expérience à 80 minutes. Mais en contrepartie, les photons n'étaient pas polarisés de manière optimale pour faire apparaître clairement les violations des inégalités de Bell. Néanmoins, cette expérience montra une violation des inégalités de Bell. Mais celle-ci était faible, et le doute était encore permis.

Mais aussi — et surtout en fait — ces expériences n'étaient pas assez élaborées pour évacuer la possibilité de corrélations (qui entraînent une violation des inégalités de Bell) qui serait dues à une influence ou à un signal quelconque, classique, de vitesse infra-luminique se propageant entre les deux particules.

Enfin, le schéma expérimental utilisé par toutes ces expériences était très éloigné du schéma « idéal » utilisé par John Bell pour démontrer ses inégalités : on n'était donc pas certain que les inégalités de Bell puissent s'appliquer telles quelles à ces expériences.

Page générée en 0.103 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise