Équipartition de l'énergie - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Équipartition en théorie cinétique des gaz

Les présentations modernes du théorème d’équipartition dans le cadre de la physique statistique sont très générales mais abstraites. Elles ne reflètent que peu les raisonnements d’origine qui s’appliquaient au problème beaucoup plus concret de la théorie cinétique des gaz. Les arguments et démonstrations d’alors, bien que moins généraux, sont utilisés par de nombreux enseignants et auteurs pour leur intérêt pédagogique. Ils permettent de mettre en valeur d’une façon différente les hypothèses fondamentales de l’équipartition.

Dans le cadre de la théorie cinétique des gaz, on considère un système composé d’un très grand nombre de sphères dures dans un conteneur. Ces sphères sont animées d’un mouvement de translation et entrent en collision les unes avec les autres. On peut supposer ici que les sphères n’interagissent pas entre elles en dehors des collisions. Tout l’enjeu de la théorie est de relier les caractéristiques microscopiques de ces mouvements (masse des particules, vitesses) aux grandeurs macroscopiques que l’on mesure (pression, température).

Des collisions à l’équipartition

Illustration d’un choc élastique entre deux sphères dures en deux dimensions. Les vitesses des deux sphères après le choc sont déterminées par la conservation de l’énergie totale et de la quantité de mouvement.

Lorsque deux particules entrent en collision, elles arrivent toutes deux avec des vitesses différentes, donc des énergies cinétiques différentes, et repartent après le choc avec des directions et des vitesses déterminées par la conservation de la quantité de mouvement et de l’énergie totale. En général, l’énergie d’une particule après le choc est différente de son énergie avant le choc. La collision est donc un moyen d’échanger de l’énergie entre les particules. Dans le modèle le plus simple tel qu’il est proposé ici, c’est même le seul moyen. Pour démontrer l’équipartition de l’énergie dans le cadre de ce modèle, il faut donc montrer comment les collisions tendent à répartir l’énergie équitablement en moyenne entre toutes les particules.

Dans tout ce qui suit, on va considérer des chocs élastiques entre deux sphères dures de masses différentes m1 et m2. On considère le choc par commodité dans le référentiel du centre de masse des deux particules, lui-même animé d’un mouvement de translation rectiligne uniforme par rapport au conteneur (tant qu’aucune particule ne rebondit sur une paroi), avec une vitesse qu’on notera vcm. On notera v1 et v2 les vitesses des particules.

À partir d’un cas particulier, James Maxwell avait avancé que le choc ne pouvait que réduire la différence d’énergie entre les deux particules. À la suite d’un très grand nombre de chocs, l’énergie ne pouvait donc que tendre vers une égalité en moyenne. Cet argument ne suffit pas à montrer que les chocs conduisent à l’équipartition ; il ne s’agit après tout que d’un cas particulier. Toutefois, de manière plus précise, il est possible de montrer que le choc ne peut que réduire la corrélation entre la différence des vitesses des deux particules et la vitesse de leur centre de masse. À l’équilibre, on peut donc supposer que cette corrélation tend vers 0 :

 \langle (v_2 - v_1)\cdot v_{\mathrm{cm}} \rangle_{\mathrm{eq}} = 0

En utilisant l’expression de la vitesse du centre de masse, on en conclut que

 \frac{1}{m_1 + m_2}\,\langle m_2 v_2^2 - m_1 v_1^2 \rangle_{\mathrm{eq}} + \frac{m_2 - m_1}{m_1 + m_2}\, \langle v_1\cdot v_2 \rangle_{\mathrm{eq}} = 0

Le premier terme de cette somme est proportionnel à la différence d’énergie cinétique moyenne entre les deux particules. Le second terme est la corrélation entre les vitesses initiales des particules. Si on suppose que ces deux vitesses sont indépendantes, autrement dit qu’il n’y a aucune relation a priori entre les vitesses de deux particules avant le choc, alors ce second terme s’annule. C’est ce qu’on appelle l’hypothèse du chaos moléculaire. Dans ce cas, on retrouve donc l’égalité des énergies cinétiques moyennes à l’équilibre :

 \tfrac{1}{2} m_1 \langle v_1^2 \rangle_{\mathrm{eq}} = \tfrac{1}{2} m_2 \langle v_2^2 \rangle_{\mathrm{eq}}

Notons qu’il n’est pas possible de déduire l’équipartition à partir des équations du choc élastique seulement : ces équations restent réversibles à l’échelle macroscopique, alors que l’évolution vers l’équilibre thermodynamique est un processus irréversible.

Distribution des vitesses à l’équilibre thermodynamique

Densités de probabilité des vitesses des atomes de quatre gaz rares à une température de 25°C : l’hélium, le néon, l’argon et le xénon. Les exposants précisent leur nombre de masse.

Une fois que l’équilibre thermodynamique est atteint, les vitesses des particules suivent la distribution des vitesses de Maxwell-Boltzmann. Cette distribution est tracée sur la figure ci-contre pour quatre gaz rares. Elle est la seule solution stationnaire de l’équation de Boltzmann. En d’autres termes, les chocs entre particules ne font que modifier les vitesses de particules prises au hasard, mais ne modifient pas la répartition d’ensemble.

On peut vérifier que la distribution de Maxwell-Boltzmann permet de retrouver le théorème d’équipartition pour le gaz parfait monoatomique. Partant de l’expression explicite de la densité de probabilité

 f (v) = 4 \pi  \left( \frac{m}{2 \pi k_\text{B} T}\right)^{3/2}\!\!v^2 \exp \left( \frac{-mv^2}{2k_\text{B} T} \right)

pour la vitesse d’une particule de masse m dans le système, on peut calculer l’énergie cinétique moyenne d’une particule par la formule intégrale :

 \langle H^{\mathrm{cin}} \rangle =  \langle \tfrac{1}{2} m v^{2} \rangle =  \int _{0}^{\infty} \tfrac{1}{2} m v^{2}\ f(v)\ dv = \tfrac{3}{2} k_\text{B} T.

On retrouve ici le fait que chaque particule a exactement la même énergie cinétique moyenne, 3/2 kBT.

Page générée en 0.394 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise