Entropie - Définition et Explications

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Remarques d’ordre général

  • L'intuition commune comprend déjà difficilement le concept énergie, cette grandeur qui, pour un système isolé, a la propriété de se conserver indéfiniment.

Autrement surprenant est le concept entropie (En thermodynamique, l'entropie est une fonction d'état introduite en 1865 par Rudolf Clausius dans le cadre du deuxième principe, d'après les travaux de Sadi Carnot....). Pour le même système isolé, l'entropie, dans le meilleur des cas, restera constante, mais en dehors de ce cas très théorique des transformations réversibles, elle ne fera que croître indéfiniment.

Une diminution d'entropie pour un système est néanmoins possible si l’augmentation de l’entropie du milieu extérieur fait plus que compenser la diminution d’entropie du système. Le bilan reste conforme à la deuxième loi de la thermodynamique : une augmentation globale de l'entropie assimilée à une création d'entropie.
Démontrons-le dans le cas d'un système composé d'un vase contenant de l'eau (L’eau est un composé chimique ubiquitaire sur la Terre, essentiel pour tous les organismes vivants connus.) liquide (La phase liquide est un état de la matière. Sous cette forme, la matière est facilement déformable mais difficilement compressible.) que l'on place à l'air (L'air est le mélange de gaz constituant l'atmosphère de la Terre. Il est inodore et incolore. Du fait de la diminution de la pression de l'air avec l'altitude, il est...) libre à -10 °C soit 263 K. L'eau gèle à °C (273 K) et tant qu'il y a coexistence de glace (La glace est de l'eau à l'état solide.) et d'eau liquide cette température (La température est une grandeur physique mesurée à l'aide d'un thermomètre et étudiée en thermométrie. Dans la vie courante,...) de changement d'état reste constante et égale à 273 K. La chaleur (Dans le langage courant, les mots chaleur et température ont souvent un sens équivalent : Quelle chaleur !) de solidification (La solidification est l'opération au cours de laquelle un liquide passe à l'état solide. Cela peut se faire par refroidissement (cas le plus...) de l'eau : L(solid) est négative (inverse de la chaleur de fusion (En physique et en métallurgie, la fusion est le passage d'un corps de l'état solide vers l'état liquide. Pour un corps pur, c’est-à-dire pour une substance constituée de molécules toutes identiques, la fusion s'effectue à température...) qui elle est positive) ainsi que l'entropie de solidification ΔS(syst) = L(solid) / 273 < 0. En revanche, la chaleur est reçue par le milieu extérieur et change de signe (- L(solid)) ; milieu extérieur dont la température n'est pas affectée par l'échange avec le système beaucoup plus petit (notion de source de chaleur). Elle reste constante et égale à 263 K. La variation d'entropie du milieu extérieur est alors égale à :

ΔS(ext) = - L(solid) / 263 > 0.

Calculons alors le bilan entropique :

ΔS(syst) + ΔS(ext) = ( L(solid) / 273 ) + ( -L(solid) / 263 ) = L(solid) ( 1/273 - 1/263 ).

Comme L(solid) < 0, il s'ensuit que le bilan est positif et l'entropie créée sera d'autant plus grande que l'écart des températures sera grand ainsi que l'irréversibilité (La réversibilité et l’irréversibilité sont des concepts importants en physique et tout particulièrement en thermodynamique.) qui va de pair. Si la température du milieu extérieur était très proche de 273 K à -ε près, on se rapprocherait d'une transformation réversible et le bilan entropique serait proche de zéro (Le chiffre zéro (de l’italien zero, dérivé de l’arabe sifr, d’abord transcrit zefiro en italien) est un symbole marquant une position vide dans l’écriture des nombres en notation...). En toute rigueur le changement de température entre le système et le milieu extérieur n'est pas brutal. Au voisinage (La notion de voisinage correspond à une approche axiomatique équivalente à celle de la topologie. La topologie traite plus naturellement les notions globales comme la continuité qui s'entend ici comme...) de la paroi séparant le système du milieu extérieur la température varie de façon continue entre 273 K et 263 K. On dit qu'il y a un gradient de température ; phénomène intimement associé à la notion d'irréversibilité.

  • L'expression « degré de désordre du système » introduite par Boltzmann peut se révéler ambiguë. En effet on peut aussi définir l'entropie comme une mesure de l'homogénéité du système considéré. L'entropie d'un système thermique (La thermique est la science qui traite de la production d'énergie, de l'utilisation de l'énergie pour la production de chaleur ou de froid, et...) est maximale quand la température est identique en tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) point (Graphie). De même, si on verse un liquide colorant (Un colorant est une substance utilisée pour apporter une couleur à un objet à teinter.) dans un verre (Le verre, dans le langage courant, désigne un matériau ou un alliage dur, fragile (cassant) et transparent au rayonnement visible. Le plus souvent, le verre est constitué d’oxyde de silicium...) d'eau, l'entropie du système coloré sera maximale quand, suite au mélange (Un mélange est une association de deux ou plusieurs substances solides, liquides ou gazeuses qui n'interagissent pas chimiquement. Le résultat de l'opération est une préparation aussi appelée mélange. Les substances...), la couleur (La couleur est la perception subjective qu'a l'œil d'une ou plusieurs fréquences d'ondes lumineuses, avec une (ou des) amplitude(s) donnée(s).) du contenu sera devenue uniforme. L'entropie d'un tableau (Tableau peut avoir plusieurs sens suivant le contexte employé :) parfaitement lisse et blanc (Le blanc est la couleur d'un corps chauffé à environ 5 000 °C (voir l'article Corps noir). C'est la sensation visuelle obtenue avec un spectre lumineux continu,...) est maximale et ne contient aucune information visible. Si on y ajoute un point coloré, l'entropie diminue, et une information a été ajoutée. Ceci illustre pourquoi, à la naissance de la théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une connaissance spéculative, souvent basée sur...) de l'information, la quantité (La quantité est un terme générique de la métrologie (compte, montant) ; un scalaire, vecteur, nombre d’objets ou d’une autre manière de dénommer la valeur d’une collection ou un groupe de choses.) d'information contenue dans un système était appelée « néguentropie ». Tout système isolé, siège d'une agitation (L’agitation est l'opération qui consiste à mélanger une phase ou plusieurs pour rendre une ou plusieurs de ces caractéristiques homogènes. Plusieurs types d'opérations liées à l'agitation...) aléatoire, tend spontanément à s'homogénéiser de manière irréversible. C'est pourquoi la notion d'entropie, telle qu’elle est définie par la physique statistique (La physique statistique a pour but d'expliquer le comportement et l'évolution de systèmes physiques comportant un grand nombre de particules (on parle de systèmes macroscopiques), à partir des caractéristiques de leurs...), a été utilisée en théorie de l'information par Claude Shannon (Claude Elwood Shannon (30 avril 1916 à Gaylord, Michigan - 24 février 2001) est un ingénieur électricien et mathématicien américain. Il est l'un des pères,...) au début des années 1950 pour mesurer la perte d'information. voir aussi l'article détaillé : Entropie de Shannon.
  • Dans le cadre de sa théorie sur "l'évaporation (L'évaporation est un passage progressif de l'état liquide à l'état gazeux. Elle est différente de l'ébullition qui est une transition rapide. C'est un...)" des trous noirs, le physicien (Un physicien est un scientifique qui étudie le champ de la physique, c'est-à-dire la science analysant les constituants fondamentaux de l'univers et les forces...) Stephen Hawking (Stephen W. Hawking, CH, CBE, FRS, FRSA, est un physicien théoricien et cosmologiste anglais, né le 8 janvier 1942 à Oxford. Hawking a été professeur de...) a proposé d'associer une entropie aux trous noirs. En effet, la création et l'annihilation de particules virtuelles à proximité de l'horizon (Conceptuellement, l’horizon est la limite de ce que l'on peut observer, du fait de sa propre position ou situation. Ce concept simple se décline en physique, philosophie, littérature, et...) d'un trou noir (En astrophysique, un trou noir est un objet massif dont le champ gravitationnel est si intense qu’il empêche toute forme de matière ou de rayonnement de...) provoquerait un rayonnement électromagnétique (Un rayonnement électromagnétique désigne une perturbation des champs électrique et magnétique.) et une perte de masse (Le terme masse est utilisé pour désigner deux grandeurs attachées à un corps : l'une quantifie l'inertie du corps (la masse inerte) et...) du trou noir, d'où le terme "évaporation". À ce rayonnement (Le rayonnement, synonyme de radiation en physique, désigne le processus d'émission ou de transmission d'énergie impliquant une particule porteuse.), on associe une température et une entropie. L'évaporation des trous noirs (Le rayonnement de Hawking est le phénomène selon lequel un observateur regardant un trou noir peut détecter un infime rayonnement de corps noir émanant de la surface de celui-ci. Ce phénomène est aussi appelé, pour...) reste à être vérifiée expérimentalement.
Page générée en 0.352 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique