Entier quadratique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques, un entier quadratique est un nombre réel ou complexe racine d'un polynôme du second degré à coefficients dans les nombres entiers et dont le coefficient du terme du plus haut degré est égal à 1. Un irrationnel quadratique est une notion un peu équivalente. Elle correspond encore à un nombre réel (non rationnel) ou complexe, racine d'un polynôme du second degré à coefficients rationnels, cette fois quelconque.

Ces nombres particuliers disposent de propriétés algébriques. Si α est un entier quadratique, l'ensemble des nombres de la forme a + b.α, où a et b désignent deux nombres entiers, est stable pour l'addition, la soustraction et la multiplication. Un tel ensemble est qualifié d'anneau. Si β est un irrationnel quadratique, l'ensemble des nombres de la forme a + b.β, où a et b désignent deux nombres rationnels, est stable pour les quatre opérations, on parle cette fois de corps.

Un nombre quadratique, entier ou irrationnel, est ainsi avant tout un élément d'un ensemble, structuré par deux opérations. Cette approche est au cœur de la théorie algébrique des nombres. Au lieu d'étudier un nombre particulier, comme le nombre d'or, l'analyse de la structure d'anneau associé, ici celui des entiers du corps Q(√5) est plus fructueuse. Cette démarche est ancienne, dès le VIe siècle les mathématiciens indiens avaient déjà découvert une multiplication sur un ensemble de cette nature, qui permet de résoudre certains cas particuliers de l'équation de Pell-Fermat. Gauss, un mathématicien du XIXe siècle, préfigure la démarche moderne et fixe le vocabulaire avec l'étude des entiers portant maintenant son nom. Il découvre que cet anneau est euclidien, permettant de développer une arithmétique analogue à celle des entiers relatifs, avec sa version du théorème fondamental de l'arithmétique et ses nombres premiers.

Ces structures sont parfois sujettes à une difficulté, qualifiée d'obstruction. Elle concerne les éléments inversibles pour la multiplication, ils sont parfois en nombre infini. Une deuxième obstruction existe si l'anneau n'est pas euclidien. L'unicité de la décomposition en facteurs premiers ne s'applique plus et les techniques usuelles de l'arithmétique s'avèrent inopérantes. Une analyse plus profonde de la structure de l'anneau permet d'y remédier à l'aide du concept d'idéal.

Les anneaux d'entiers quadratiques forment en général la première classe d'exemples dans laquelle on tente de faire fonctionner des théories inaccessibles dans le cas général (voir par exemple le théorème de Kronecker-Weber en théorie des corps de classes). L'étude des entiers quadratiques admet une version plus algébrique : l'étude des formes quadratiques à coefficients entiers. Il n'y a pas d'analogue à cette interprétation dans les corps de nombres en général.

Préambule

Motivation

La première motivation historique est la résolution d'équations diophantiennes du deuxième degré. Ces équations sont à coefficients entiers et les solutions recherchées sont entières. Un exemple célèbre est x2 - 61.y2 = 1, traité par Brahmagupta, un mathématicien indien, reprise par Fermat dans un défi présenté à la communauté européenne en 1657.

En vue de résoudre cette équation, il est judicieux d'étudier les nombres de la forme a + b√61, ici a et b désignent deux entiers relatifs. On remarque que si α et β sont de cette forme, alors leur somme et leur produit l'est aussi. De plus, si α et β correspondent à deux couples d'entiers solutions de l'équation, alors c'est aussi le cas pour α.β. Résoudre l'équation revient en fait à déterminer un sous-ensemble particulier de l'anneau des entiers quadratiques de la forme a + b√61. Cet ensemble correspond à un sous-groupe du groupe des unités, c'est-à-dire des éléments possédant un inverse dans l'anneau.

Un deuxième exemple est l'étude des propriétés arithmétiques associées au nombre d'or φ. Une fois encore, les nombres de la forme a + b.φ forment une structure stable pour l'addition et la multiplication, appelé anneau. Il est particulier dans le sens où il admet une division euclidienne. Cette division euclidienne offre une structure suffisamment proche de celle des entiers relatifs pour que le terme d' entier soit utilisé pour écrire un élément de l'ensemble. Les techniques de résolution sont absolument analogues à celle de l'arithmétique élémentaire.

Pour Z, il est utile d'enrichir la structure pour obtenir un ensemble munis d'une addition et d'une multiplication tel que tout élément non nul soit inversible. La technique utilisée, appelée corps des fractions permet de construire Q, le corps des nombres rationnels. Elle s'applique aussi aux anneaux d'entiers quadratiques. On obtient une structure dont les éléments sont appelés parfois rationnels quadratiques par analogie avec les nombres rationnels obtenus à partir des entiers relatifs. À travers le concept de tour d'extension quadratique, cette structure est l'un des fondements de la compréhension des figures constructibles à la règle et au compas.

Anneaux euclidiens

Les entiers algébriques sur un corps quadratique forment des anneaux aux propriétés variables en fonction d'une valeur d correspondant à un entier sans facteur carré.

Si d est égal à -1, l'anneau est celui des entiers de Gauss. Il est formé des nombres complexes de la forme a + i.b avec a et b deux entiers relatifs et i l'unité imaginaire. Il correspond à une structure simple, il est euclidien et en conséquence principal et factoriel. Le groupe des unités est fini et cyclique. Cette configuration se produit pour quelques valeurs de d comme -2 et -3. Si d est égal à -3, l'anneau est celui des entiers d'Eisenstein. Sur chacun de ces anneaux, les outils de l'arithmétique élémentaire s'appliquent avec succès. Le lemme d'Euclide, l'identité de Bézout ou encore la décomposition en facteurs premiers se traduisent pratiquement sans modification. Ceux plus sophistiqués de l'arithmétique modulaire comme le passage au quotient, le petit théorème de Fermat ou la loi de réciprocité quadratique se généralisent aussi sans difficulté majeure.

Groupe des unités

Si d est positif, une première difficulté apparait, elle est illustrée par l'anneau des entiers de Dirichlet qui correspond à l'arithmétique du nombre d'or 1/2(1 + √5). Cette arithmétique est étudiée en profondeur à l'aide des outils élémentaires dans l'article associé. Si l'anneau est parfois euclidien, le groupe des unités devient infini. Pour toutes ces valeurs, aucun des théorèmes ou propriétés cités précédemment n'est utilisable. Pour la résolution d'équations diophantiennes comme celle du grand théorème de Fermat pour n = 5, les contournements deviennent acrobatiques. Comprendre la structure du groupes des unités revient à résoudre l'équation de Pell-Fermat. Dirichlet appelle obstruction cette difficulté. Si d est négatif, cette difficulté n'apparaît jamais, le groupe des unités est fini et cyclique.

Anneaux non factoriels

Si la valeur absolue de d augmente, une deuxième obstruction voit le jour. Le cas où d est égal à -5, l'anneau des entiers est Z[i.√5] est le premier exemple. Il correspond au plus petit anneau contenant l'ensemble des entiers relatifs Z et i.√5. L'égalité suivante met en évidence cette obstruction :

2.3=(1+i.\sqrt 5)(1-i.\sqrt 5)\;

Aucun des quatre entiers de l'égalité précédente ne possède de diviseur autre de 1 et lui-même (au groupe des unités près). Ils correspondraient donc à des nombres premiers. L'égalité montre que 6 possède dans cet anneau deux décompositions en facteurs premiers. L'anneau n'est ni euclidien, ni principal ni factoriel. D'autres outils doivent être mis en jeu pour appréhender cette situation.

Page générée en 0.127 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise