Écoulement de Poiseuille - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Champ de vitesse entre deux plaques

On suppose que le gradient de pression est orienté selon l'axe x et que la normale aux plaques est orientée selon z, avec les plaques situées en  z = \pm h/2 . La vitesse est alors parallèle aux plaques, et plus précisément orientée selon l'axe x :  \vec{v} = v \vec{u}_x .

Équation du profil de vitesse :

 v(x,y,z) = v(z) = v_{\rm max}\;\left( 1-\frac{4\,z^2}{h^2} \right)

où la vitesse maximale (au milieu de la couche) est liée au gradient de pression, à la viscosité dynamique et à la distance entre les plaques :  v_{\rm max} = \frac{h^2}{8\;\eta} \; \frac{{\rm d} p}{{\rm d} x}

La démonstration de ce résultat est similaire à celle donnée ci-dessous dans le cas du tube circulaire.

Champ de vitesse dans un tube

La vitesse est parallèle à l'axe du tube (noté z) :  \vec{v} = v \vec{u}_z .

Équation du profil de vitesse :

 v(r,z,\theta) = v(r) = v_{\rm max}\;\left( 1-\frac{r^2}{R^2} \right)

où la vitesse maximale (au centre du tube) est liée au gradient de pression, à la viscosité dynamique et au rayon :  v_{\rm max} = \frac{R^2}{4\;\eta} \; \frac{{\rm d} p}{{\rm d} z}

La démonstration de ce résultat est donnée plus bas.

Démonstration (dans le cas du tube)

1. Par symétrie, l'écoulement ne varie ni en z, ni en θ :

v(r,z,θ) = v(r)


2. Par conséquent, les seuls efforts de cisaillement sont des forces selon z transmises radialement (selon r) :

 \sigma_{rz}(r,z,\theta) = \sigma_{rz}(r) = \eta\;\frac{{\rm d} v(r)}{{\rm d} r}

3. Par symétrie également, la variation de la pression est constante le long de l'axe z :

 \frac{{\rm d} p}{{\rm d} z} = {\rm const}


4. Considérons les efforts subis par une zone cylindrique de rayon r et de longueur Δz.

Les efforts de pression sur les deux faces circulaires du cylindre ont une résultante égale à :

 F_{\rm faces} = \pi\,r^2 \; \Delta z \; \frac{{\rm d} p}{{\rm d} z}

Les contraintes de cisaillement sur le bord du cylindre lui transmettent une force orientée selon son axe z :

 F_{\rm bord} = 2\pi\,r \; \Delta z \; \sigma_{rz}(r)

Le gradient de pression se transmet aux parois en tant que contrainte de cisaillement.

La force totale exercée sur le cylindre de liquide est nulle puisque l'écoulement est permanent. Ainsi :

 \sigma_{rz}(r) = \frac{r}{2} \; \frac{{\rm d} p}{{\rm d} z}


5. Il s'ensuit que le gradient de vitesse est linéaire en r :

 \frac{{\rm d} v(r)}{{\rm d} r} = \frac{\sigma_{rz}(r)}{\eta} = \frac{r}{2\;\eta} \; \frac{{\rm d} p}{{\rm d} z}


6. Autrement dit, le champ de vitesse est parabolique :

 v(r) = {\rm const} + \frac{r^2}{4\;\eta} \; \frac{{\rm d} p}{{\rm d} z}


7. Compte tenu de la condition de non-glissement (v(R) = 0) :

 v(r) = -\frac{R^2}{4\;\eta} \; \frac{{\rm d} p}{{\rm d} z}  \; \left( 1-\frac{r^2}{R^2} \right)

La vitesse est plus importante au centre du conduit malgré le signe négatif, étant donné que la vitesse est orientée à l'encontre du gradient de pression. Écoulement dans le sens positif pour un gradient négatif... CQFD

Page générée en 0.094 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise