Disque dur - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Types d'interface des disques durs

Un disque dur à interface SCSI

Les interfaces des disques durs ont largement évolué avec le temps dans un souci de simplicité et d'augmentation des performances. Voici quelques interfaces possibles :

  • Storage Module Device (SMD), très utilisée dans les années 1980, elle était principalement réservée pour les disques de grande capacité installés sur des serveurs ;
  • SA-1000 un bus utilisé en micro informatique, d'où le ST-506 est dérivé ;
  • ST-506, très utilisée au début de la micro-informatique dans les années 1980 ;
  • ESDI (Enhanced Small Device Interface), a succédé au ST-506, qu'elle améliore ;
  • L'interface IDE (ou PATA par opposition au SATA, voir plus loin), la plus courante dans les machines personnelles jusqu'à 2005, appelée aussi ATA (AT ATACHMENT), à ne pas confondre avec S-ATA, cette dernière l'ayant remplacée ;
  • SCSI (Small Computer System Interface), plus chère, mais offrant des performances supérieures. Toujours utilisée et améliorée (passage de 8 à 16 bits notamment, et augmentation de la vitesse de transfert, normes SCSI-1, SCSI-2, SCSI-3) ;
  • SAS (Serial Attached SCSI), combine les avantages du SCSI avec ceux du Serial ATA (elle est compatible avec cette dernière) ;
  • Serial ATA (ou S-ATA), est une interface série, peu coûteuse et plus rapide qu'ATA (normes SATA et SATA II), c'est la plus courante désormais (2008) ;
  • Fibre-Channel (FC-AL), est un successeur du SCSI. La liaison est série et peut utiliser une connectique fibre optique ou cuivre. Principalement utilisée sur les serveurs.

Principe de fonctionnement

L'intérieur d'un disque dur dont le plateau a été retiré. Sur la gauche se trouve le bras de lecture/écriture. Au milieu on peut voir les électro-aimants du moteur du plateau

Dans un disque dur, on trouve des plateaux rigides en rotation. Chaque plateau est constitué d'un disque réalisé généralement en aluminium, qui a les avantages d'être léger, facilement usinable et non magnétique. Des techniques plus récentes utilisent le verre ou la céramique, qui permettent des états de surface encore meilleurs que ceux de l'aluminium. Les faces de ces plateaux sont recouvertes d'une couche magnétique, sur laquelle sont stockées les données. Ces données sont écrites en code binaire [0,1] sur le disque grâce à une tête de lecture/écriture, petite antenne très proche du matériau magnétique. Suivant le flux électrique qui la traverse, cette tête modifie le champ magnétique local pour écrire soit un 1, soit un 0, à la surface du disque. Pour lire, c'est le même principe qui est utilisé, mais dans l'autre sens : le champ magnétique local engendre au sein de la tête un flux électrique qui dépend de la valeur précédemment écrite, on peut ainsi lire un 1 ou un 0.

Un disque dur typique contient un axe central autour duquel les plateaux tournent à une vitesse de rotation constante. Les têtes de lecture/écriture sont reliées à une même armature qui se déplace à la surface des plateaux, avec une à deux têtes par plateau (une tête par face utilisée). L'armature déplace les têtes radialement à travers les plateaux pendant qu'ils tournent, permettant ainsi d'accéder à la totalité de leur surface.

L'électronique associée contrôle le mouvement de l'armature ainsi que la rotation des plateaux, et réalise les lectures et les écritures suivant les requêtes reçues. Les firmwares des disques durs récents sont capables d'organiser les requêtes de manière à minimiser le temps d'accès aux données, et donc à maximiser les performances du disque.

Mécanique

Plateaux

Les plateaux sont solidaires d'un axe sur roulements à billes ou à huile. Cet axe est maintenu en mouvement par un moteur électrique. La vitesse de rotation est actuellement (2009) comprise entre 3 600 et 15 000 tours/minute (l'échelle typique des vitesses est 3 600, 4 200, 5 400, 7 200, 10 000 et 15 000 tours/minute). La vitesse de rotation est maintenue constante sur la plupart des modèles. Depuis les problèmes liés à l'environnement, les constructeurs ont sorti des disque visant l'économie d'énergie souvent dénommés "Green". Ces disques ont des vitesses de rotation variables, souvent de 5400tpm (Tours par minute) à 7200tpm (Comprenez que lors de non-sollicitations, les disques tournent à 5400tpm, et oscillent entre cette valeur et 7200tpm lors d'accès à ce disque...).

Les plateaux sont composés d'un substrat, autrefois en aluminium (ou en zinc), de plus en plus souvent en verre, traités par diverses couches dont une ferromagnétique recouverte d'une couche de protection. L'état de surface doit être le meilleur possible.

Note : contrairement aux cd/dvd, c'est d'abord l'espace périphérique le plus éloigné du disque (du centre du plateau donc) qui est écrit en premier (et reconnu comme "début du disque"), car c'est à cet endroit que les performances sont à leurs maximums (en effet, la tête de lecture/écriture parcourt une plus grande surface en un tour qu'au milieu du disque).

Tête de lecture/écriture

Le bras supportant les deux têtes de lecture/écriture. Les rayures visibles sur la surface du plateau indiquent que le disque dur était en panne, victime d'un «atterrissage».
Le moteur du bras, les deux parties blanches de part et d'autre de la bobine sont des aimants. Le couvercle contenant deux autres aimants a été retiré pour faire apparaître le pivot et la bobine.
Tête de disque dur de 1970

Fixées au bout d'un bras, elles sont solidaires d'un second axe qui permet de les faire pivoter en arc de cercle sur la surface des plateaux. Toutes les têtes pivotent donc en même temps. Il y a une tête par surface. Leur géométrie leur permet de voler au-dessus de la surface du plateau sans le toucher : elles reposent sur un coussin d'air créé par la rotation des plateaux. En 1997, les têtes volaient à 25 nanomètres de la surface des plateaux, aujourd'hui (2006) cette valeur est d'environ 10 nanomètres.

Le moteur qui les entraîne doit être capable de fournir des accélérations et décélérations très fortes. Un des algorithmes de contrôle des mouvements du bras porte-tête est d'accélérer au maximum puis de freiner au maximum pour que la tête se positionne sur le bon cylindre. Il faudra ensuite attendre un court instant pour que les vibrations engendrées par le freinage s'estompent.

À l'arrêt, les têtes doivent être parquées, soit sur une zone spéciale (la plus proche du centre, il n'y a alors pas de données à cet endroit), soit en dehors des plateaux.

Si une ou plusieurs têtes entrent en contact avec la surface des plateaux, cela s'appelle un atterrissage et provoque le plus souvent la destruction des informations situées à cet endroit. Une imperfection sur la surface telle qu'une poussière aura le même effet. La mécanique des disques durs est donc assemblée en salle blanche et toutes les précautions (joints, etc.) sont prises pour qu'aucune impureté ne puisse pénétrer à l'intérieur du boîtier (appelé « HDA » pour Head Disk Assembly en anglais).

Les techniques pour la conception des têtes sont (en 2006) :

  • Tête inductive ;
  • Tête MR - MagnétoRésistive ;
  • Tête GMR - Giant MagnétoRésistive.

Électronique

Elle est composée d'une partie dédiée à l'asservissement des moteurs et d'une autre à l'exploitation des informations électriques issues de l'interaction électromagnétique entre les têtes de lecture et les surfaces des plateaux. Une partie plus informatique va faire l'interface avec l'extérieur et la traduction de l'adresse absolue d'un bloc en coordonnées à 3 dimensions (tête, cylindre, bloc).

L'électronique permet aussi de corriger les erreurs.

Contrôleur de disque

Une carte contrôleur de disque dur IDE accolée à son disque

Un contrôleur de disque est l'ensemble électronique qui est connecté directement à la mécanique d'un disque dur. La mission de cet ensemble est de piloter les moteurs de rotation et de déplacement des têtes de lecture/enregistrement, et d'interpréter les signaux électriques reçus de ces têtes pour les convertir en bits ou réaliser l'opération inverse afin d'enregistrer des données à un emplacement particulier de la surface des disques composant le disque dur.

Sur les premiers disques durs, comme par exemple le ST-506, ces fonctions étaient réalisées par une carte électronique indépendante de l'ensemble mécanique. Le volumineux câblage d'interconnexion a rapidement favorisé la recherche d'une solution plus compacte : le contrôleur de disque se trouva alors accolé au disque, donnant naissance aux standards SCSI et IDE.

L'appellation « Contrôleur de disque » est souvent employée par erreur en remplacement de « Contrôleur ATA » ou « Contrôleur SCSI ». En effet un contrôleur de disque pilote juste la partie mécanique d'un disque dur, pendant que les autres pilotent des périphériques variés : disque dur bien sûr mais aussi lecteur de CD, dérouleur de bande magnétique, scanner, etc.

Alimentation électrique

Elle s'effectuait en général par un connecteur Molex. Les disques durs Serial ATA utilisent parfois le connecteur molex mais elles sont remplacées par une prise longue et plate.

Géométrie

Chaque plateau (possédant le plus souvent 2 surfaces utilisables) est composé de pistes concentriques séparées les unes des autres par une zone appelée "espace interpiste". Les pistes situées à une même distance de l'axe de rotation forment un cylindre.

Géométrie d'un disque dur
Ici 3 plateaux (appelé Dispac) donc 6 têtes de lectures car 6 surfaces à lire.

La piste est divisée en secteurs (aussi appelés blocs) contenant les données.

Géométrie d'une surface. Les pistes sont concentriques, les secteurs contigus.

En adressage CHS, il faut donc trois coordonnées pour accéder à un bloc (ou secteur) de disque :

  1. le numéro de la tête de lecture (choix de la surface) ;
  2. le numéro de la piste (détermine la position du bras portant l'ensemble des têtes) ;
  3. le numéro du bloc (ou secteur) sur cette piste (détermine à partir de quel endroit il faut commencer à lire les données).

Cette conversion est faite le plus souvent par le contrôleur du disque à partir d'une adresse absolue de bloc appelée LBA (un numéro compris entre 0 et le nombre total de blocs du disque diminué de 1).

Puisque les pistes sont circulaires (leur circonférence est fonction du rayon - c = 2*pi*r), les pistes extérieures ont une plus grande longueur que les pistes intérieures (leur circonférence est plus grande). Le fait que la vitesse de rotation des disques soit constante quelle que soit la piste lue/écrite par la tête est donc problématique. Sur les premiers disques durs (ST-506 par exemple) le nombre de secteurs par rotation était indépendant du numéro de piste (donc les information étaient stockées avec une densité spatiale variable selon la piste). Depuis les années 1990 et la généralisation du zone bit recording, la densité d'enregistrement est devenue constante, avec une variation du nombre de secteurs selon la piste.

Sur les premiers disques, une surface était formatée en usine et contenait les informations permettant au système de se synchroniser (de savoir quelle était la position des têtes à tout moment). Cette surface était dénommée « servo ». Par la suite, ces zones de synchronisation ont été insérées entre les blocs de données, mais elles sont toujours formatées en usine (dans la norme SCSI il existe une commande FORMAT qui réenregistre intégralement toutes les informations de toutes les surfaces, elle n'est pas nécessairement mise en œuvre sur tous les disques). Typiquement donc, on trouvera sur chaque piste une succession de :

  1. un petit espace « blanc » (« gap » en anglais) : il laisse à la logique du contrôleur de disque une zone inutilisée de cette piste du disque pendant le temps nécessaire au basculement du mode lecture au mode écriture et inversement (cela permet également de compenser de légères dérives de la vitesse de rotation des surfaces de disque) ;
  2. une zone servo : elle contient des « tops » permettant de synchroniser la logique du contrôleur de disque avec les données qui vont défiler sous la tête de lecture juste après ;
  3. un en-tête contenant le numéro du bloc qui va suivre : il permet au contrôleur du disque de déterminer le numéro de secteur que la tête le lecture va lire juste après (et par là de déterminer également si le bras portant les têtes est positionné sur la bonne piste) ;
  4. les données : ce qui est véritablement stocké par l'utilisateur du disque ;
  5. une somme de contrôle permettant de détecter/corriger des erreurs : cela fournit également un moyen de mesurer le vieillissement du disque dur (il perd petit à petit de sa fiabilité).
Format d'un secteur. Il ne contient pas que les données stockées, mais aussi un préambule permettant de synchroniser le système d'asservissement du disque, un en-tête avec l'identifiant du bloc et enfin une somme de contrôle (Σ) permettant de détecter d'éventuelles erreurs.
Page générée en 0.590 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise