Dihydrogène - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Propriétés chimiques

Test de reconnaissance du dihydrogène

Afin de tester sa présence, on approche une bûchette enflammée d'un tube à essai contenant du dihydrogène. Il se produit un bruit caractéristique appelé « jappement ».

Combustion

La combustion du dihydrogène dans le dioxygène, qui produit de l'eau, est particulièrement violente (voir test de reconnaissance) et très exothermique: son pouvoir calorifique est de 141,79 MJ/kg contre, par exemple, seulement 49,51 MJ/kg pour le butane. Cette propriété en fait un carburant de choix pour les engins spatiaux mais rend son stockage dangereux. La même oxydation plus lente est utilisée pour produire du courant électrique dans les piles à combustible.

Formes ortho et para

Le dihydrogène gazeux est un mélange de type de molécules qui diffèrent l'une de l'autre par le spin de leur électron et noyaux atomiques. Ces deux formes sont appelées ortho- et para-hydrogène et la forme para n'existe pas à l'état pur. Dans les conditions normales de température et de pression, l'hydrogène est composé à 75 % de la forme ortho et à 25 % de la forme para. Ces deux formes ont des niveaux énergétiques légèrement différents et donc des propriétés physico-chimiques légèrement différentes. Par exemple, le point de fusion et le point d'ébullition du para-hydrogène sont environ 0,1 K plus bas que ceux de l'ortho-.

Dangers, risques et précautions

Le dihydrogène est un gaz classé « extrêmement inflammable ». Il est caractérisé par un domaine d’inflammabilité très large (de 4 à 75 % du volume dans l’air), provoquant une déflagration à partir d’un apport d’énergie d’activation très faible (une étincelle suffit si elle apporte une énergie de 0,02 millijoule (mJ) alors qu’il faut 0,29 mJ pour déclencher une explosion du méthane). L'hydrogène mélangé à de l'oxygène dans les proportions stœchiométriques est un explosif puissant. Le dihydrogène dans l'air est un mélange détonnant lorsque le rapport volumique H / air est compris entre 13 et 65 %.

L'histoire de son utilisation dans les ballons dirigeables est parsemée d'accidents graves, dont le plus célèbre est la catastrophe du Hindenburg. Le zeppelin « LS 129 », gonflé de 200 000 mètres-cubes de dihydrogène (car les USA avaient déclaré envers l'Allemagne un embargo pour l' hélium) brûla le 6 mai 1937 à son arrivée à l'aérodrome de Lakehurst (État du New-Jersey, près de New York). 36 personnes moururent sur le total de 97 embarquées. Les médias qui étaient présentes divulguèrent largement les images de la catastrophe, ce qui conduisit à la désaffection du public pour les ballons. Le remplacement du dihydrogène par l'hélium (beaucoup plus coûteux et plus dense) ne produisit pas le regain de faveur attendu. Les enquêtes sur l'origine de l'accident, facilitées par l'abondance de documents photographiques, n'incriminèrent pourtant pas une explosion du dihydrogène, mais une inflammation par contigüité, à partir d'un incendie de l'enveloppe (causé probablement par une décharge d'électricité statique). La composition du revêtement étanche de l'enveloppe (butyrates et aluminium) aurait favorisé une violente réaction aluminothermique.

Le dihydrogène réagit encore plus violemment avec le dichlore pour former de l'acide chlorhydrique (HCl), même sans activation. Et avec le difluor pour former de l'acide fluorhydrique (HF), et ceci même aux températures où l'hydrogène est liquide et le fluor solide ! Cette dernière réaction étant la réaction chimique la plus exothermique qui soit.

L’industrie stocke le dihydrogène à l’extérieur des bâtiments, ce qui ne sera pas possible pour une utilisation embarquée (véhicules, navires). Les normes de sécurité sont renforcées pour répondre aux risques posés par le passage dans les tunnels et le stationnement dans les garages ou parkings souterrains.

La réglementation mondiale sur les véhicules s’élabore sous l’égide de l'ONU à partir des propositions des industriels, mais concernant le dihydrogène, les constructeurs japonais, américains et européens ne s’accordent pas. La Commission européenne pourrait décider d’une réglementation communautaire provisoire.

En France, l’INERIS et le CEA travaillent avec l’Organisation internationale de normalisation (ISO) dans un comité technique nommé TC 197 sur le risque dihydrogène. Un projet européen Hysafe traite aussi de la question, où l’INERIS a critiqué le projet de règlement en suggérant une approche plus globale et systémique et non par composant pour l’homologation des véhicules hybrides.

Dans le cadre de l'utilisation de l'hydrogène en tant que vecteur d'énergie, plusieurs études ont soulevé l'hypothèse d'un risque majeur pour la couche d'ozone en cas d'utilisation massive. La peur de l'hydrogène est bien réelle, même si le célèbre « syndrome Hindenburg », né de la destruction du dirigeable allemand en 1937 à Lakehurst (New Jersey), a probablement pénalisé injustement la filière. D'après un scientifique de la NASA en effet, l'incendie qui a détruit le ballon a été déclenché par une décharge électrostatique au niveau du matériau combustible de son enveloppe extérieure, et il n'y a pas eu d'explosion de l'hydrogène stocké à bord, qui a simplement brûlé. Il reste que l'accident aurait été moins violent si le ballon avait été gonflé à l'hélium....

L'hydrogène n'est pas plus dangereux que le gaz naturel ou l'essence, il est tout simplement différent. En matière de sûreté, les points suivants sont à retenir :

  • Il est 8 fois plus léger que le méthane et sa molécule, très petite, lui confère un très bon coefficient de diffusion dans l'air (4 fois supérieur à celui du méthane). En milieu non confiné, l'hydrogène a donc tendance à monter et à se diluer très vite dans l'air, ce qui est un facteur de sécurité
  • L'hydrogène est l'espèce chimique la plus énergétique par unité de masse (120 kJ/g). En revanche, par unité de volume de gaz, l'énergie explosive théorique est 3,5 fois plus faible pour l'hydrogène que pour le gaz naturel.
  • Sa limite inférieure d'inflammation est de 4 % en volume, comparable à celle du gaz naturel (5 % en volume). En revanche, sa limite supérieure d'inflammation est nettement plus élevée (75 % contre 15 %).
  • L'énergie nécessaire pour l'enflammer à la stoechiométrie est également nettement plus faible (environ 10 fois ) que le gaz naturel ou le propane.
  • La flamme d'hydrogène rayonne peu, ce qui, en cas d'incendie, limite le risque de propagation par effet de rayonnement thermique. Par contre, sa flamme bleu pâle est quasi invisible le jour, ce qui peut constituer un risque pour les secours.
  • La flamme d'hydrogène se propage beaucoup plus vite (environ 7 fois) que celle du gaz naturel et le risque de détonation (explosion avec effet de souffle très important) n'est pas complètement à exclure.

Référence ONU pour le transport de matières dangereuses

  • Nom (français) : Hydrogène comprimé
    • Classe : 2
    • numéro : 1049
  • Nom (français) : Hydrogène liquide réfrigéré
    • Classe : 2
    • numéro : 1966
  • Nom (français) : Hydrogène dans un dispositif de stockage à hydrure métallique
    • Classe : 2
    • numéro : 3468
Page générée en 0.092 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise