Diffusion de la matière - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La diffusion désigne la tendance naturelle d'un système à rendre homogènes les concentrations des espèces chimiques en son sein. C'est un phénomène de transport irréversible qui se traduit par la migration d'espèces chimiques dans un milieu. Sous l'effet de l'agitation thermique on observe un déplacement des constituants des zones de forte concentration vers celles de faible concentration. D'un point de vue phénoménologique, et au premier ordre, ce phénomène est régi par une loi de Fick.

Diffusion et migration

Le déplacement des atomes, ions ou molécules dans un milieu, que celui-ci soit solide (cristallin ou amorphe), liquide ou gazeux, est appelé de manière générale « migration ». La diffusion est la migration sous l'effet de l'agitation thermique, à l'exception des autres phénomènes. Elle intervient par exemple dans des procédés d'amélioration des caractéristiques mécaniques (traitements de surface comme la nitruration ou cémentation), la résistance à la corrosion et les procédés d'assemblage par brasage.

Lorsqu'un atome se déplace parmi des atomes de même nature, on parle d'autodiffusion. Par exemple, on parlera d'autodiffusion du fer pour désigner la migration d'un atome de fer dans un cristal de fer.

Lorsque l'on a deux milieux homogènes différents que l'on met en contact, on parle d'interdiffusion.

Lois de Fick

Première loi de Fick

La première loi de Fick énonce que

le flux de diffusion est proportionnel au gradient de concentration.

Cette loi est inspirée de la loi de Fourier sur la conduction de la chaleur. Elle peut être vue comme une définition du « vecteur densité de courant » \vec{\jmath}_i qui vérifie la seconde loi de Fick, en ce sens qu'elle ne contient pas la physique du phénomène de diffusion.

Mathématiquement, cette loi s'exprime de la manière suivante :

  • soit un milieu B dans lequel se trouve une espèce chimique A, soit une surface S ;
  • si CA (xyzt) est la concentration de A en un point donné ;
  • on appelle \vec{\jmath}_A (molécule s-1m-2) le « vecteur densité de courant de particules » des particules de A ;
  • la première loi de Fick s'écrit  :
 \vec{\jmath}_A = -D_{AB} \cdot \overrightarrow{\mathrm{grad}}\;C_A

également notée, avec l'opérateur nabla :

\vec{\jmath}_A = -D_{AB} \cdot \vec{\nabla} C_A .

La grandeur DAB (m2s-1) est le coefficient de diffusion de A dans le milieu B considéré ; il dépend de la température, du milieu et de A.

À une dimension (par exemple en se plaçant sur l'axe des z), cette équation devient :

j_{A_z} = -D_{AB}\cdot \frac{\partial C_A}{\partial z}

Ce vecteur donne accès au flux de particules de A à travers une surface S quelconque, c’est-à-dire le nombre de particules de A traversant cette surface par unité de temps : si on note \varphi_A ce flux, on a

\varphi_A= \iint_S \vec{\jmath}_A \cdot d\vec{S} .

Seconde loi de Fick

La loi de la conservation des espèces indique que l'opposé de la variation par unité de temps de la quantité de particules i

\iiint C_i \cdot dV

dans un volume donné V est égale au flux sortant

\iint\vec{\jmath_i} \cdot d\vec{S}

du vecteur densité de courant de particules \vec \jmath_i à travers la surface fermée S délimitant le volume V. On obtient la deuxième loi de Fick en identifiant les intégrands ci-dessous :

-\frac{\partial}{\partial t} \iiint_V C_i \cdot dV = \iint_S \vec{\jmath_i} \cdot d\vec{S} = \iiint_V \mathrm{div} \vec{\jmath_i} \cdot dV .

La deuxième égalité ci-dessus est due au théorème de la divergence, dit de « Green-Ostrogradsky », et le signe moins provient du fait que la concentration diminue quand le flux sortant augmente. On a donc

où div est l'opérateur divergence ; on le note aussi comme un produit scalaire formel avec l'opérateur nabla

\frac{\partial C_i}{\partial t} + \vec{\nabla} \cdot \vec{\jmath_i} = 0 .

À une dimension, l'équation devient :

\frac{\partial C_i}{\partial t} + \frac{\partial j_i}{\partial x} = 0 ou encore \frac{\partial C_i}{\partial t} = -\frac{\partial j_i}{\partial x} .

Similarité à l'équation de la chaleur

Si le coefficient de diffusion D est indépendant de la concentration, alors la réunion des 2 précédentes équation et de la règle d'analyse différentielle

\operatorname{div}\left(\overrightarrow\operatorname{grad}\right) = \nabla^2 = \Delta (laplacien)

donne l'équivalent de l'équation de la chaleur :

\frac{\partial C_i}{\partial t} - D_i^m\Delta C_i = 0 .

À une dimension, l'équation devient :

\frac{\partial C_i}{\partial t} - D_i^m \frac{\partial^2 C_i}{\partial x^2} = 0 ou encore \frac{\partial C_i}{\partial t} = D_i^m \frac{\partial^2 C_i}{\partial x^2} .

Activation thermique

L'origine de l'auto-diffusion est l'agitation thermique. La diffusion est donc thermiquement activée, et le coefficient de diffusion suit une loi d'Arrhénius :

D^m_i (T) = D^m_{i0} \cdot e^{-\frac{E}{kT}}

E est l'énergie d'activation, k est la constante de Boltzmann et T est la température absolue.

Page générée en 0.103 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise