David Hilbert - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Bibliographie

  • Pierre Cassou-Noguès, Hilbert, 2001, Les Belles lettres. Coll. Figures du savoir ; 29, 169p. ISBN 2-251-76036-9.

Travaux

On retient de lui notamment sa liste de 23 problèmes, dont certains ne sont toujours pas résolus aujourd'hui, qu'il présenta en 1900 au congrès international des mathématiciens à Paris.

Ses contributions aux mathématiques sont nombreuses :

  • Consolidation de la théorie des invariants, qui était le sujet de sa thèse.
  • L'axiomatisation de la géométrie euclidienne, pour la rendre cohérente, parue dans son (de) Grundlagen der Geometrie (Base de la géometrie).
  • Travaux sur la théorie algébrique des nombres, reprenant et simplifiant, avec l'aide de Minkowski, les travaux de Kummer, Kronecker, Dirichlet et Dedekind, et les publiant dans son (de) Zahlbericht (Rapport sur les nombres).
  • Apport des espaces de Hilbert, lors de ses travaux en analyse sur les équations intégrales.
  • Apport sur les bases mathématiques de la relativité générale d'Einstein, notamment la dérivation de son équation à partir de l'action d'Einstein-Hilbert.

Le théorème des bases

Les premiers travaux d'Hilbert sur les fonctions invariantes l'amènent à démontrer en 1888 son théorème des bases. Vingt ans plus tôt, à l'aide d'une méthode de calculs complexe, Paul Gordan démontre le théorème sur la finitude des générateurs des formes binaires. Les tentatives de généraliser sa méthode aux fonctions à plusieurs variables échouent à cause de la complexité des calculs. Hilbert décide d'emprunter une autre voie. Il démontre ainsi le théorème des bases, qui affirme l'existence d'un ensemble fini de générateurs pour les invariants des formes algébriques pour n'importe quel nombre de variables. Il ne construit pas effectivement une telle base ni n'indique de moyen d'en construire. Il prouve l'existence formellement en montrant que rejeter cette existence conduit à une contradiction.

Hilbert envoie ses résultats au Mathematische Annalen. Gordan, l'expert maison sur la théorie des invariants, ne parviendra pas à apprécier la nature révolutionnaire des travaux d'Hilbert. Il rejette l'article, affirmant qu'il est incompréhensible : « C'est de la théologie, pas des mathématiques ! »

Felix Klein, de son côté, reconnaît l'importance du travail et garantit qu'il sera publié sans modification, malgré son amitié pour Gordan. Stimulé par Klein et les commentaires de Gordan, Hilbert, dans un second article, prolonge ses résultats, donnant une estimation sur le degré maximal de l'ensemble minimal des générateurs. Après lecture, Klein lui écrit : « Sans aucun doute, il s'agit du plus important travail sur l'algèbre générale jamais publié par les Annalen ».

Plus tard, une fois les méthodes de Hilbert largement reconnues, Gordan lui-même affirme : « Je dois admettre que même la théologie a des mérites. »

Axiomatisation de la géométrie

Hilbert publie Grundlagen der Geometrie(Les fondements de la géométrie) en 1899. Il remplace les cinq axiomes usuels de la géométrie euclidienne par 21 axiomes. Son système élimine les faiblesses de la géométrie d'Euclide, la seule enseignée à ce moment.

Son approche est décisive dans l'adoption des méthodes axiomatiques. Les axiomes ne sont plus immuables. La géométrie peut codifier l'intuition que nous avons à propos des « objets », mais il n'est pas nécessaire de tout codifier. Les éléments, tels un point, une droite et un plan, peuvent être substitués par un verre de bière, une chaise et une table, par exemple. Il faut plutôt se concentrer sur leurs relations.

Hilbert axiomatise la géométrie plane selon cinq grands groupes :

  1. Axiomes d'appartenance : huit axiomes expriment le lien entre les notions de point, de droite et de plan.
  2. Axiomes d'ordre : quatre axiomes définissent le terme « entre » et permettent de définir l'ordre des points alignés, coplanaires ou dans l'espace
  3. Axiomes de congruence : cinq axiomes définissent la notion de congruence et de déplacement.
  4. Axiome des parallèles : il s'agit essentiellement du cinquième axiome d'Euclide.
  5. Axiomes de continuité : il contient l'axiome d'Archimède et celui de l'intégrité linéaire.

Ces axiomes unifient dans un seul système la géométrie plane et la géométrie dans l'espace, toutes deux euclidiennes.

Les 23 problèmes

À l'occasion d'un congrès international de mathématiciens tenu en 1900 à Paris, il propose sa fameuse liste des 23 problèmes. Même au XXIe siècle, elle est considérée comme la compilation ayant eu le plus d'influence en mathématiques, devant les trois grands problèmes de l'Antiquité. Certains estiment qu'il s'agit de la meilleure liste de problèmes ouverts jamais produite par un seul mathématicien.

Après avoir proposé de nouvelles fondations à la géométrie classique, Hilbert aurait pu s'attacher à extrapoler pour le reste des mathématiques. Il décide plutôt de déterminer les problèmes fondamentaux auxquels les mathématiciens doivent s'attaquer pour rendre les mathématiques plus cohérentes. Son approche s'oppose à celles des logicistes Russell et Whitehead, des « encyclopédistes » Bourbaki et du métamathématicien Giuseppe Peano. Sa liste met au défi la communauté des mathématiciens au complet, peu importe ses intérêts.

Lors du congrès, son discours commence ainsi :

« Qui d'entre nous ne serait pas heureux de soulever le voile qui masque le futur, pour jeter un regard sur les progrès imminents de notre science et sur les secrets de son développement pendant les siècles futurs ! Quelles seront elles, les fins vers lesquelles tendront les esprits mathématiques dominants des générations à venir ? Quelles méthodes nouvelles, quels faits nouveaux, les prochains siècles révèleront-ils - dans le riche et vaste champ de la pensée mathématique ? »

À la suggestion de Minkowski, il présente environ une dizaine de problèmes à la salle. La liste complète sera publiée dans les actes du congrès. Dans une autre publication, il propose une version augmentée, et finale, de sa liste de problèmes.

Quelques problèmes ont été rapidement résolus. D'autres ont été discutés pendant le XXe siècle, certains sont maintenant considérés comme étant trop vagues pour qu'on puisse leur donner une réponse définitive. Même aujourd'hui, il reste quelques problèmes bien définis qui défient les mathématiciens.

Formalisme

Les problèmes de Hilbert sont aussi une sorte de manifeste qui permet l'éclosion de l'école formaliste, l'une des trois écoles majeures du XXe siècle en mathématiques. Selon cette école, les mathématiques existent en dehors de toute intention et de toute pensée. Elles sont des symboles qui demandent à être manipulés selon des règles formelles. Cependant, il n'est pas certain qu'Hilbert ait eu une vue aussi simple et mécanique des mathématiques.

Le programme de Hilbert

En 1920, il propose explicitement un programme de recherche en métamathématique qui sera connu plus tard sous le nom de programme de Hilbert. Il souhaite que les mathématiques soient solidement et complètement formulées en s'appuyant sur la logique. Hilbert croit que c'est possible, car :

  1. Toutes les mathématiques découlent d'un ensemble fini d'axiomes correctement choisis.
  2. Il peut être démontré que cet ensemble est cohérent.

Il semble que Hilbert s'appuie sur des arguments à la fois techniques et philosophique pour proposer un tel programme. Il affirme qu'il déteste l'ignorabimus relativement courant dans la pensée allemande de l'époque (dont l'on peut retracer la formulation à Emil du Bois-Reymond).

Ce programme est maintenant partie du formalisme. Bourbaki a adopté une version élaguée et moins formelle pour ses projets de (a) écrire une fondation encyclopédique et de (b) soutenir la méthode axiomatique en tant qu'outil de recherche. Bien que cette approche ait été féconde en algèbre et en analyse fonctionnelle, elle a connu peu de succès ailleurs.

L’impact de Gödel

Hilbert et les autres mathématiciens qui travaillent à l'entreprise veulent réussir. Cependant, leur travail devait se terminer de façon abrupte.

En 1931, Kurt Gödel démontre que tout système formel non-contradictoire et suffisamment complet pour inclure au moins l'arithmétique, ne peut démontrer sa cohérence en s'appuyant sur ses axiomes. Tel que formulé, le grand schème de Hilbert est donc voué à l'échec.

Le théorème d'incomplétude de Gödel ne dit pas qu'il est impossible de réaliser un tel système selon l'esprit du programme de Hilbert. La complétion de la théorie de la démonstration a permis de clarifier la notion de cohérence, qui est centrale dans les mathématiques modernes. Le programme de Hilbert a lancé la logique sur une voie de clarification. Le désir de mieux comprendre le théorème de Gödel a permis le développement de la théorie de la récursion et la clarification de la logique. Cette dernière est devenue une discipline à part entière dans les décennies de 1930 et de 1940. Elle forme le point de départ de ce qui est aujourd'hui appelée l'informatique théorique, développée par Alonzo Church et Alan Turing.

Analyse fonctionnelle

Dès 1909, Hilbert étudie de façon méthodique les équations différentielles et intégrales. Ce travail a une incidence marquée sur l'analyse fonctionnelle moderne.

Dans le but de mener à bien sa tâche, il introduit le concept d'espaces euclidiens de dimensions infinies, appelés plus tard les espaces de Hilbert. De façon inattendue, ce travail sera repris en physique théorique pendant les deux décennies subséquentes.

Plus tard, Stefan Banach généralisera le concept pour en faire l'espace de Banach.

Physique

Minkowski semble responsable de la plupart des recherches de Hilbert en physique avant 1912, y compris leur séminaire conjoint sur le sujet en 1905. En effet, jusqu'en 1912, Hilbert fait exclusivement des mathématiques pures.

Cette année-là, il porte son attention sur la physique. Il a même engagé un « tuteur en physique ». Il commence par étudier la théorie cinétique des gaz, puis continue avec la théorie des radiations et complète avec la théorie moléculaire de la matière. Même pendant la Première Guerre mondiale, il propose séminaires et cours où sont présentés les travaux d'Albert Einstein et autres physiciens.

Hilbert invite Einstein à Göttingen pour y prononcer une série de lectures sur la relativité générale en juin et juillet 1915. Les échanges entre les deux savants mènent à la création de l'équation d'Einstein de la relativité générale (c'est-à-dire l'équation du champ d'Einstein et l'action d'Einstein-Hilbert). Même si Hilbert et Einstein ne se sont jamais disputés à propos de la paternité de l'équation, certains ont voulu remettre en cause celle-ci (voir Controverse sur la paternité de la relativité).

De plus, le travail de Hilbert anticipe et appuie les avancées dans la formulation mathématique de la mécanique quantique. Ses espaces de Hilbert sont essentiels aux travaux de Hermann Weyl et John von Neumann sur l'équivalence mathématique entre la mécanique matricielle de Heisenberg et l'équation de Schrödinger, ainsi qu'à la formulation générale de la mécanique quantique.

En 1926, von Neumann démontre que si les états atomiques sont considérés comme des vecteurs dans l'espace de Hilbert, alors ils correspondent à la fonction d'onde de Schrödinger et à la matrice de Heisenberg.

Dans le cadre de ses travaux en physique, Hilbert s'acharne à rendre plus rigoureuses l'utilisation des mathématiques. Alors que leurs travaux dépendent entièrement des mathématiques supérieures, les physiciens sont négligents lorsqu'ils manipulent les objets mathématiques. Pour un mathématicien du calibre de Hilbert, cette situation est difficile à comprendre, allant jusqu’à la qualifier de « laide ».

Lorsqu'il parvient à se faire un portrait de l'utilisation des mathématiques en physique, il développe une théorie mathématique cohérente à l'usage des physiciens, surtout en ce qui concerne les équations intégrales. Quand Richard Courant publie Methods of Mathematical Physics en incluant quelques idées de Hilbert, il ajoute le nom de Hilbert comme auteur, même si ce dernier n'a pas participé à sa rédaction. Hilbert a écrit : « La physique est trop difficile pour les physiciens », voulant attirer l'attention sur la difficulté inhérente à l'utilisation de mathématiques supérieures. L'ouvrage de Courant et Hilbert tente d'aplanir ces difficultés.

Théorie des nombres

Hilbert unifie la théorie algébrique des nombres avec son Rapport sur les nombres ((de) Zahlbericht, publié en 1897). Il résout le problème de Waring de façon quasi-complète. Son traité épuise le sujet, mais l'émergence de la notion de « forme modulaire de Hilbert » signifie que son nom est attaché encore une fois à une partie majeure des mathématiques.

Il a fait plusieurs conjectures sur la théorie des corps de classes. Les concepts ont une importante remarquable, et ses propres contributions apparaissent dans le corps de classes de Hilbert et le symbole de Hilbert de la théorie du corps de classes local. Les résultats de ces théories sont presque tous prouvés en 1930, après une percée majeure de Teiji Takagi, ce qui l'établit comme le premier mathématicien japonais de calibre international.

Hilbert n'a pas travaillé sur les parties principales de la théorie analytique des nombres, mais son nom reste attaché à la conjecture de Hilbert-Pólya pour des raisons anecdotiques.

Page générée en 0.164 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise