Cyclone tropical - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Effets

L'après-coup de l'ouragan Andrew (1992), le second cyclone tropical le plus coûteux de l'histoire des États-Unis, après Katrina (2005).

Le relâchement de chaleur dans un cyclone tropical mature peut excéder 2×1019 joules par jour. Cela équivaut à faire détoner une bombe thermonucléaire de 10 mégatonnes toutes les 20 minutes ou 200 fois la capacité instantanée de production électrique mondiale. Les cyclones tropicaux au grand large causent de grosses vagues, de la pluie forte, et des vents violents, ce qui compromet la sécurité des navires en mer. Toutefois, les effets les plus dévastateurs des cyclones tropicaux se produisent quand ils frappent la côte et entrent dans les terres. Dans ce cas, un cyclone tropical peut causer des dommages de quatre façons :

  • vents violents : des vents de force d'ouragan peuvent endommager ou détruire des véhicules, des bâtiments, des ponts, etc. Les vents forts peuvent aussi transformer des débris en projectiles, ce qui rend l'environnement extérieur encore plus dangereux ;
  • onde de tempête : les tempêtes de vent, y compris les cyclones tropicaux, peuvent causer une montée du niveau de la mer et des inondations dans les zones côtières ;
  • pluie forte : les orages et les fortes pluies provoquent la formation de torrents, emportant les routes et provoquant des glissements de terrain ;
  • tornades : les orages imbriqués dans le cyclone donnent souvent naissance à des tornades. Bien que ces tornades soient normalement moins intenses que celles d'origine non-tropicale, elles peuvent encore provoquer d'importants dommages. Elles se produisent surtout à la bordure externe du système après son entrée sur les terres, là où le cisaillement des vents est important à cause de la friction.

Les effets secondaires d'un cyclone tropical sont souvent aussi destructeurs, notamment les épidémies. Le milieu humide et chaud dans les jours qui suivent le passage du cyclone, conjugué à la destruction des infrastructures sanitaires, augmente le risque de propagation d'épidémies, qui peuvent tuer longtemps après le passage du cyclone.

À ce problème peut s'ajouter celui des pannes de courant : les cyclones tropicaux causent souvent de lourds dommages aux installations électriques, privant de courant la population, coupant les communications et nuisant aux moyens de secours et d'intervention. Ceci rejoint le problème des transports, puisque les cyclones tropicaux détruisent souvent des ponts, viaducs, et routes, ralentissant considérablement le transport de vivres, de médicaments et de matériel de secours vers les zones sinistrées.

Paradoxalement, le passage meurtrier et destructeur d’un cyclone tropical peut avoir des effets positifs ponctuels sur l’économie des régions touchées, et du pays en général, ou plutôt sur son PIB dans certains secteurs comme la construction. Par exemple, en octobre 2004, après une saison cyclonique particulièrement intense dans l'Atlantique, 71 000 emplois ont été créés dans le bâtiment pour réparer les dégâts subis, notamment en Floride.

Observations et prévisions

Observations

Avions WP-3D Orion de la National Oceanic and Atmospheric Administration des États-Unis : les chasseurs de cyclones.

Les cyclones tropicaux intenses posent un problème particulier quant à leur observation. Comme il s'agit d'un phénomène océanique dangereux, on dispose rarement d'instruments sur le site même du cyclone, sauf lorsque celui-ci passe sur une île ou une zone côtière, ou si un navire infortuné se trouve pris dans la tempête. Même dans ces cas, la prise de mesures en temps réel n'est possible qu'en périphérie du cyclone, où les conditions sont moins catastrophiques.

La prise de mesures au sein même du cyclone est toutefois possible par avion. Des avions spécialement équipés, généralement de gros quadrimoteurs turbopropulsés, peuvent voler dans le cyclone, prendre des mesures directement ou à distance, et y lâcher des catasondes.

On peut aussi repérer la pluie associée avec la tempête par radar météorologique lorsque qu'elle s'approche relativement près des côtes. Ceci donne des informations sur la structure et l'intensité des précipitations. Les satellites géostationnaires et circumpolaires peuvent obtenir des informations en lumière visible et en infrarouge partout au-dessus du globe. On en tire l'épaisseur des nuages, leur température, leur organisation et la position du système ainsi que la température de surface de la mer. Certains nouveaux satellites à orbite basse sont même équipés de radars.

Prévisions

Diminution évidente de l'erreur de position de la trajectoire depuis les années 1970

Les systèmes tropicaux se situent à la limite inférieure de l'échelle synoptique. Comme les systèmes des latitudes moyennes, ils dépendent donc de la position des crêtes barométriques, anticyclones et des creux environnants mais la structure verticale des vents et le potentiel de convection y est également critique, comme pour les systèmes de méso-échelle. Les prévisionnistes tropicaux considèrent encore que le meilleur indicateur instantané du déplacement de ces systèmes est encore le vent moyen dans la troposphère où se trouve le cyclone et la trajectoire lissée notée antérieurement. Dans le cas d'un environnement avec beaucoup de cisaillement, l'utilisation du vent moyen de basse altitude, comme celui de 700 hPa à environ 3 000 mètres, est cependant meilleure.

Pour une prévision à plus long terme, des modèles de prévision numérique du temps ont été développés spécialement pour les systèmes tropicaux. En effet, la combinaison d'une circulation en général assez faible dans les Tropiques et une grande dépendance de la convection sur les cyclones tropicaux nécessite une analyse et un traitement à très fine résolution qui ne sont pas présents dans les modèles normaux. De plus, ceux-ci incorporent des paramètres des équations primitives atmosphériques qui sont souvent négligés à plus large échelle. Les données d'observations obtenues par le biais des satellites météorologiques et des chasseurs d'ouragans sont injectées dans ces modèles pour accroître la précision. On voit à droite un graphique de l'évolution de l'erreur sur la position de la trajectoire depuis les années 1970, en milles marins, dans le bassin de l'Atlantique Nord sur les prévisions du National Hurricane Center. On remarque qu'à toutes les périodes de prévision, l'amélioration est très importante. Pour ce qui est de l'intensité des systèmes, l'amélioration a été moindre à cause de la complexité de la micro-physique des systèmes tropicaux et des interactions entre les échelles méso et synoptiques.

Tendances et réchauffement climatique

Le développement de cyclones est un phénomène irrégulier et le début des mesures fiables de la vitesse des vents ne remonte seulement qu'au milieu du XXe siècle. Une étude publiée en 2005 montre une augmentation globale de l'intensité des cyclones entre 1970 et 2004, leur nombre total étant en diminution pendant la même période. Selon cette étude, il est possible que cette augmentation d'intensité soit liée au réchauffement climatique, mais la période d'observation est trop courte et le rôle des cyclones dans les flux atmosphériques et océaniques n'est pas suffisamment connu pour que cette relation puisse être établie avec certitude. Une seconde étude, publiée un an plus tard, ne montre pas d'augmentation significative de l'intensité des cyclones depuis 1986. La quantité d’observations à notre disposition n’est en fait statistiquement pas suffisante.

Ryan Maue, de l'université de Floride, dans un article intitulé « Northern Hemisphere tropical cyclone activity », observe pour sa part une baisse marquée de l'activité cyclonique depuis 2006 dans l'hémisphère nord par rapport aux trente dernières années. Il ajoute que la baisse est probablement plus marquée, les mesures datant de trente ans ne détectant pas les activités les plus faibles, ce que permettent les mesures d'aujourd'hui. Pour Maue, c'est possiblement un plus bas depuis cinquante ans que l'on observe en termes d'activité cyclonique. Christopher Landsea, de la NOAA et un des anciens co-auteurs du rapport du GIEC, estime lui aussi que les mesures passées sous-estiment la force des cyclones passés et sur-valorisent la force des cyclones actuels.

On ne peut donc pas déduire que l'augmentation de spectaculaires ouragans depuis 2005 est une conséquence directe du réchauffement climatique. Cette augmentation pourrait être due à l’oscillation entre périodes froides et chaudes de la température de surface des bassins océaniques comme l’oscillation atlantique multidécennale. Le cycle chaud de cette variation à lui seul permet de prédire des ouragans plus fréquents pour les années 1995 à 2020 dans l'Atlantique Nord.

Les simulations informatiques ne permettent également pas dans l'état actuel des connaissances de prévoir d'évolution significative du nombre de cyclones lié à un réchauffement climatique à cause des autres effets mentionnés qui brouillent la signature. Dans la seconde moitié du XXIe siècle, lors de la prochaine période froide de l’Atlantique Nord, le réchauffement climatique pourrait donner un signal plus clair.

Page générée en 0.143 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise